Ook virussen gebruikten de CRSIPR-methode

CRISPR-complex

De structuur van Integrate-CRISPR, waarbij het donkerblauwe deel het cascade-enzym is (Cas), het roze het gids-RNA en het lichtblauwe het enzym transposase waarmee stukjes DNA in het genoom kunnen worden ‘gelast’ (afb: Sternberg & Fernández Labs, Columbiauniversiteit)

Wij mensen hebben CRISPR-methode van bacteriën. Die gebruiken CRISPR om zich tegen bacetrievirussen (bactriofagen) te beschermen. Nu schijnen die bacteriofagen juist die CRISPR-methode te hebben gejat als onderdeel van de wapenwedloop tussen beide organismen. Mogelijk dat dat tot nieuwe toepassingen van de ‘genschaar’ leidt, speculeert Mazhar Adli van de Noordwestuniversiteit, die niet bij het onderzoek betrokken was. Lees verder

CRISPR-behandeling voor blindheid werkt voor maar weinigen

Editas

CRISPR-behandeling (afb: Editas)

Wat werd gezien als ‘vulkanische’ ontdekking om met de CRISPR-methode een zeldzame vorm van blindheid te behandelen zal maar weinigen baat geven. Het betrokken bedrijf zoekt partners om de behandeling te vervolmaken, opdat meer blinden er profijt van kunnen trekken. Lees verder

Hoe de kwantumtheorie en het leven elkaar tegenkomen

Protonenoverdracht in DNA

Protonen (H-kernen) wandelen soms over de bindingen tussen de twee DNA-strengen. Dit namen de onderzoekers mee in hun kwantumchemische berekeningen (afb: Nature)

Ergens ontmoeten de kwantumwereld en het (ook mikroskopische) leven elkaar, maar ik (=as=totale leek) heb nooit geweten dat er ook kwantumbiologen zijn. Die zijn er, tenminste aan de universiteit van Surrey (Eng). Die kwamen tot de conclusie dat enzymen die verantwoordelijk zijn voor de celdeling weleens mutaties zouden kunnen veroorzaken. Oftewel: hoe kom ik van kwantum op bio en terug? Lees verder

We doen te weinig met al die RNA’s, vinden genetici

Danny Incarnato

Danny Incarnato (afb: univ van Groningen)

Een mens heeft zo’n 20 000 genen, maar maakt minstens tien keer meer RNA-moleculen aan die niet betrokken zijn bij de eiwitproductie, zogeheten niet-coderede RNA’s. Die kunnen elk nog verschillende vormen aannemen. Danny Incarnato, moleculair geneticus van de universiteit van Groningen en Robert Spitalefrom van de universiteit van Californië in Irvine beschrijven in Nature manieren om iets met de ongebruikte mogelijkheden van die biomoleculen te doen. Lees verder

Wordt ook de sumatraanse neushoorn voor uitsterven behoed?

Sumatraanse neushoorn met jong

Sumatraanse neushoorn met jong (afb: WikiMedia Commons)

We hadden het al over de mogelijke wederopstanding van de mammoet en de buidelwolf en het voorkómen van het uitsterven van de witte neushoorn in Afrika. Daar kunnen we de Sumatraanse neushoorn aan toevoegen. Ook die, zoals vele dieren, staat op het punt van de wereld te verdwijnen. Oorzaak: de mens. Onderzoeksters proberen dat te voorkomen. Lees verder

CRISPR-methode gebruikt om genoom bacteriën te veranderen

Darmbacterie Escherichia coli (E. coli)

Darmbacterie Escherichia coli (E. coli)

Onderzoekers van de staatsuniversiteit van Noord-Carolina hebben het van bacteriën geleende afweermiddel CRISPR gebruikt om een genetisch veranderd virus de genen in een bacterie te laten veranderen. De CRISPR-wereld op zijn kop. Lees verder

Bloedlichaampjes in het lab geproduceerd

Bloedcellen

Vlnr: rode bloedcel, bloedplaatje en witte bloedcel

De geneeskunde is nog erg afhankelijk van vrijwilligers die bloed afgeven. Al langere tijd proberen wetenschappers bloedcellen te maken en dat schijnt onderzoekers in Groot-Brittannië nu te zijn gelukt. Die cellen zijn ook in minihoeveelheden ingebracht bij mensen. Het gaat om rode bloedlichaampjes, die zuurstof door het lichaam transporteren. Lees verder

Na de mammoet ook weer de Tasmaanse tijger gerevitaliseerd?

Tasmaanse tijger Benjamin

Benjamin in 1933 (afb: WikiMedia Commons)

Er zijn altijd weer onderzoekers die uitgestorven dieren weer tot leven willen wekken, waarom dan ook. Mammoeten vormen een bij uitstek revitaliseerbare diersoort, maar vlak de Tasmaanse tijger (of buidelwolf) niet uit. Die is pas in de jaren 30 (1936) uitgestorven, wat korter geleden dus dan de mammoet. Dan zijn de kansen op succes een tikkie groter, maar waartoe? Lees verder

Hoe vinden cellen de juiste medecellen?

Rijpende eicel

Een rijpende eicel (afb: Weichselberger et.al)

Het begint allemaal met een bevruchte eicel die zich deelt in dezelfde type cellen enzovoort  totdat er verschillen optreden. Dat is het intrigerende begin van wat we vrucht of embryo noemen. Uiteindelijk groeit uit dat klontje identieke cellen een organisme met honderden verschillende celtypen. Dat is op zich al opzienbarend, maar hoe vinden de juiste celtypen elkaar en ontwikkelen die zich tot organen en andere weefsels? Onderzoeksters bekeken die ontwikkeling aan de hand van rijpende eicellen bij fruitvliegjes (een belangrijk proefdiertje of Drosophila melanogaster in het Latijn). Het schijnt iets met de onderlinge aantrekkingskracht tussen cellen te maken te hebben , concludeerden ze, waarbij het eiwit EYA een doorslaggevende rol lijkt te spelen. Lees verder

Via truc laat cel eiwitten met genintstructies binnen

RNA-splitsing

RNA-splitsing. De term splitsing (Engels splicing) is afkomstig van het splitsen van touw (om er een stuk aan te breien) (afb: WikiMedia Commons)

Onderzoekers hebben een truc bedacht om cellen zover te krijgen dat ze eiwitten met ‘geninstructies’ binnen laten via een normaal, natuurlijk proces. Daardoor maken die cellen eiwitten aan die de cel zelf niet aanmaakt door een genetische afwijking. Daarmee zou een nieuwe methode ontwikkeld zijn om genetische ziektes te lijf te gaan met gentherapieën. De onderzoekers denken dan aan ziektes als Alzheimer, sommige vormen van kanker en blindheid. Lees verder