Er zijn nog heel wat eiwitten in een cel dan we nu weten

bRNA-translatie in ribosoom

De bRNA-translatie in het ribosoom (afb: WikiMedia Commons)

Ook ik (=as) heb altijd gedacht dat de wetenschap wel wist wat er aan eiwitten in een cel rondzwerven, maar dat blijkt helemaal niet het geval te zijn. Eiwitten die korter zijn dan 100 aminozuren worden niet eens bekeken en toch zouden die wel eens een belangrijke rol kunnen spelen in de cel. Onderzoekers hebben aan de hand van boodschapper-RNA’s nu ruim 7000 van die vergeten eiwitjes achterhaald. Een goudmijn van onontdekte biologie, denken wetenschappers. Lees verder

Molmotor van DNA gefröbeld

Molmotor onder de elektronenmicroscoop

De molmotor gezien door de elektronenmicroscoop. Linksonder (c) de motor met een lange rotorarm (afb: tÜM)

Er wordt heel wat afgefröbeld met DNA. Dat wordt DNA-origami genoemd naar de/het Japanse papierknipkunst(je). DNA blijkt heel dankbaar knutselmateriaal te zijn. Nu hebben onderzoekers van DNA een moleculaire motor gemaakt die aangedreven wordt door de Brownse beweging en die energie opslaat door een DNA-veer op te winden. Dat soort machientjes zou op een dag kunnen gebruikt om dingen in ons lichaam ‘recht te zetten’ (om maar wat te noemen). Lees verder

Gedeactiveerd Cas9 gebruikt voor draaien aan knoppen genexpressie

Isaac Hilton en Kaiyuan Wang

Isaac Hilton en Kaiyuan Wang (afb: Rice-universiteit)

Onderzoekers hebben gedeactiveerd Cas9, bekend als genschaar in de CRISPR-methode om het genoom te bewerken, gebruikt om de genexpressie in een cel te veranderen. Met behulp van deze techniek zouden meer raadsels van de werking van cellen kunnen worden opgelost (denken ze). Lees verder

Weten we nu hoe stamcellen zich tot gerijpte cellen ontwikkelen?

Darmwand

De darmwand met de darmvlokken (villi) en damrcryptes waar darmcellen zich delen (afb: ISTA)

Stamcellen kunnen zich, afhankelijk van hun ‘status’, ontwikkelen tot een scala aan celsoorten, maar wie wat maakt wat zo’n stamcel uiteindelijk wordt. Onderzoekers denken daar nu meer licht op geworpen te hebben na het ontdekken van zo’n differentiëringsmechanisme in de ingewanden van muisjes. Het zou zijn gebleken dat de richting van de ontwikkeling (mede) bepaald wordt door de plaats in het organisme en door bewegingen in de omgeving. Lees verder

Embryocellen ontwikkelen zich door trekken en duwen

Embryonale huidcellen kip in een petrischaaltje

De embryonale huidcellen organiseerden zich in een petrischaaltje tot een ring en, uiteindelijke, tot veerfollikelcellen (afb: Rockefelleruniversiteit)

Embryo’s bestaan oorspronkelijk uit dezelfde cellen. Al langer leeft de vraag hoe daaruit een organisme kan ontstaan met wel honderden verschillende celsoorten. Het lijkt er op dat trekken en duwen van de embryocellen leidt tot die celdifferentiëring, https://doi.org/10.1016/j.cell.2022.04.023“>zo concluderen onderzoeksters op basis van onderzoek aan kippenembryocellen. Geïsoleerde embryonale huidcellen van kippen organiseerden zich spontaan doordat cellen aan elkaar trekken en duwen. Daardoor vormden zich in 48 uur haarzakjes voor de veren van de kip in wording. Lees verder

Muisjes geboren uit huidcellen

muisjes uit huidcellen

De donkere muis links zou de eerste huidcelmuis zijn (af: univ. van Yamanashi)

Voor het eerst zouden er muisjes geboren zijn die niet zijn ontstaan door een versmelting van een eicel en een zaadcel maar uit huidcellen. Onderzoekers denken daarmee een oplossing gevonden te hebben om dieren die uitgestorven zijn of op het punt van uitsterven te staan weer tot leven te wekken. Lees verder

DNA uitlezen van een cel plus de epigenetische toestand

activiteitregulering van genen

Methylering is een van de manieren om de genactiviteit te reguleren

Alle cellen in ons lichaam hebben dezelfde genen, maar de activiteit van de genen (genexpressie) in de diverse celtypen in ons lichaam is niet de zelfde. We praten dan over de epigenetica. Nu lijken onderzoekers een methode ontwikkeld te hebben om drie verschillende vormen van die regulering van genactiviteit tegelijkertijd te bepalen. Lees verder

‘Zachte’ CRISPR zou nauwkeuriger zijn en ‘natuurlijker’

Nickasereparatie

Nickases werken beter bij reparatie van ziekmakende genen dan genschaar Cas9, waarbij een DNA-reaparatiesysteem van de cel het herstelwerk doet (afb: UCSD)

De van bacteriën geleende genoom-bewerkings-techniek CRISPR (eigenlijk een afweersysteem) wordt een grote toekomst toegedicht in het repareren van genetische fouten, maar kampt met nogal wat ‘kinderziektes’ waaronder onbedoelde effecten. Nu zou en groep biologen van de universiteit van Californië in San Diego in de groep van Ethan Bier een ‘zachte’ variant van de CRISPR-methode hebben ontwikkeld die gebruik maakt van nickases en van de natuurlijke DNA-reparatiemethodes, die daardoor ook nauwkeuriger zou zijn. Lees verder

Experimenteren met synthetische genen die cellen hun plaats wijzen

Rattenembryo van 15,5 dagen

Een rattenvrucht van 15,5 dagen (afb: der Spiegel)

Onderzoekers van de universiteit van New York hebben synthetische Hox-genen gemaakt en die ingevoegd in het genoom van stamcellen. Dat zouden ze hebben gedaan om er achter te komen hoe de bij die genen horende Hox-eiwitten het ‘lot’ van de cellen bepalen in een zich ontwikkelend organisme. Hox-eiwitten helpen cellen te leren en te onthouden waar hun plaats is in dat organisme. Lees verder

T-cellen in opleiding in de zwezerik

Zwezerik

In de zwezerik (thymus) leren T-cellen onderscheid te maken tussen eigen en niet-eigen. Op de foto een zwezerik van een mens (afb: WikiMedia Commons)

Het afweersysteem is een prachtig systeem, ik kan het niet vaak genoeg zeggen. Grofweg kun je zeggen dat we een aangeboren afweersysteem hebben en een aangeleerd. Nu blijkt dat T-cellen, de frontstrijders van het afweersysteem, eerst naar school gaan in de zwezerik om daar te leren wat eigen en niet-eigen is, zodat ze niet het eigene aanvallen. Lees verder