Zijn enzymen voor springende genen de nieuwe CRISPR?

Springende genen in maïs

Springende genen in maïs zogen voor zeer diverse kleurpatronen van de korrels (afb: WikiMedia Commons)

Een moleculaire eigenaardigheid gevonden in bacteriën zou wel eens een nieuwe grote stap in de genoombe-werking kunne zijn, waardoor onderzoekers grote segmenten DNA kunnen invoegen, verwijderen of omdraaien. De techniek, beschreven in drie artikelen die deze maand in Nature (1 en 2) en in Nature Communications  zijn gepubliceerd, maakt gebruik van het natuurlijke vermogen van de zogenaamde springende genen om zichzelf in genomen in te voegen. Als deze ’truc’ van bacteriën ook in zoogdierencellen werkt, dan zou deze techniek weleens een concurrent kunnen worden van de CRISPR-methode om het genoom te bewerken. Tot nu toe lijkt die techniek haar belofte nog steeds niet echt te hebben ingelost. Lees verder

Fotosynthese met CRISPR/CAs9 ‘opgevoerd’

Rijsthalmen

Oryza oftewel rijst

Het schijnt dat een groep onderzoekers van, de universiteit van Californië in Berkeley met CRISPR/Cas9 het genoom van een rijstsoort heeft veranderd om de activiteit van een aantal genen te verhogen zodat de fotosynthese (de omzetting van zonne-energi8e in scheikundige energie) wordt ‘opgevoerd’ om zo de oogst te vergroten. Lees verder

Zonder zes micro-RNA’s wordt foetus met Y-chromosoom een vrouwtje

Het Y-chromosoom

Het Y-chromosoom

Als bij muisembryo’s de aanmaak van zes kleine RNA-moleculen (microRNA’s) dan blijken vruchten met het mannelijke Y-chromosoom toch vrouwtjes te worden, zo konden onderzoekers rond Rafael Jiménez van de universiteit van Granada (Sp) constateren. Die microRNA’s blijken een belangrijke rol te spelen in de geslachtsbepaling van zoogdieren (in ieder geval van muisjes). Kennelijk maken niet alleen de geslachtschromosomen (de X– en Y-chromosoom) uit of een foetus mannelijk of vrouwelijk wordt. Lees verder

Truc gebruikt om grote stukken DNA in plantengenoom in te voegen

Geninbouw in planten

Inbouw van grote stukken DNA (gen X) in een tabaksplant. Van links naar rechts het resultaat met een inactieve Cas9-variant, een actieve DNA-variant en een combinatie met endonuclease (afb: Leibnizintituut IPB)

Wetenschappers rond Alain Tissier van het Leibnizinstituut voor plantenbiochemie (IPB) zijn er naar het schijnt voor het eerst in geslaagd grote gensecties op een stabiele en nauwkeurige manier zeer efficiënt in het DNA van  planten in te voegen. Daartoe veranderden ze de CRISPR/Cas-methode voor het bewerken van genen. Het verbeterde proces biedt volgens de onderzoekers grote kansen voor gerichte genoombewerking van hogere planten voor zowel veredeling als wetenschap. Lees verder

Horizontale chromosoom gezien bij eukaryote schimmels

Metarhizium anisopliae besmette kakkerlak

Een met Metarhizium anisopliae besmette kakkerlak (afb: WikiMedia CVommons)

Horizontale genoverdracht komt vooral bij prokaryote organismen als bacteriën voor. Daarbij nemen de organismen genetisch materiaal over van andere soorten. Bij eukaryoten, organismen van cellen met kernen, komt dat zelden voor. Daar is sprake van verticale genoverdracht: het genetisch materiaal komt van beide ouders. Er is bij schimmels, eukaryoten, wel eens horizontale genoverdracht gezien, maar niet dat er een heel chromosoom wordt overgedragen, zoals onderzoekers constateerden. Wellicht dat voor schimmels horizontale chromosoomoverdracht voordelen biedt op het gebied van aanpassing. Lees verder

Hebben we onze snelle hersens aan virussen te danken?

Hersencel

De uitlopers (dendrieten en axonen) zorgen voor het elektrische contact met andere zenuwcellen (afb: Wikicommons)

Menigeen zal zich ergens tijdens de coronacrisis hebben afgevraagd  wat nou toch in godsnaam het nut is van virussen. Dan bedoelen meestal wat wij mensen aan zoiets hebben. Nu lijkt het er op dat retrovirussen de bron zouden zijn van een retrotrasposon dat wezenlijk is voor de productie van myeline, een eiwit dat weer van groot belang is is voor ons centrale zenuwstelsel. Met enige overdrijving zou je kunnen zeggen dat die virussen ons mensen hersens hebben bezorgd evenals andere gewervelden. Lees verder

T-cellen met CRISPR-methode hersteld in zeldzame ziekte

FHL-genreparatie

De reparatie van het foutieve gen mbv perforatie en de CRISPR/Cas9-techniek (afb: Klaus Rajewsky et. al/Science)

De ziekte wordt hemofagocytische lymfohistiocytose genoemd, FHL (de F van familie, want aangeboren), en is zeldzaam. Het treft zuigelingen en peuters en de overlevingskans is gering. De mutaties bij die kinderen verhinderen dat cytotoxische T-cellen, giftige afweercellen, hun werk goed kunnen doen. Onderzoekers hebben met de CRISPR/Cas9-genoombewerkingsmethode de mutaties in die T-cellen gerepareerd, eerst bij muisjes en daarna met succes bij gemuteerde T-cellen van twee jeugdige patiëntjes met FHL. Lees verder

Het eiwit SATB2 zou voor je ‘slimheid’ zorgen

Ruimtelijke structuur DNA

Ruimtelijke structuur DNA met (l) en zonder SATB2 (afb: univ. van Innsbruck/ Georg Dechant et. al)

Je verstand zit in je hersenschors en de hippocampus. Bepaalde hersencellen bevatten het eiwit SATB2. Als dat in die cellen ontbreekt verandert de ruimtelijke structuur van DNA en daarmee het denkvermogen, is het idee. Onderzoekers in, onder meer, Oostenrijk zouden erin geslaagd zijn beide structuren te verwezenlijken (met en zonder dat eiwit), waarmee ze meer te weten zouden zijn gekomen over psychiatrische aandoeningen. Lees verder

Uit fouten bij de replicatie van DNA kunnen kleine miRNA-genen ontstaan

Voorbeelden van miRNA's

Voorbeelden van miRNA’s (afb:WikiMedia Commons)

Onderzoekers denken ontdekt te hebben hoe nieuwe genen ontstaan. Door fouten bij de verdubbeling van DNA bij de celdeling kunnen soms stukken DNA ontstaan die van voor naar achter en omgekeerd dezelfde nucleotidevolgorde hebben, palindromen in taalkundige termen (parterretrap, bijvoorbeeld). Die ‘palindromen’ zouden kunnen leiden tot genen die coderen voor regulerende eiwitten die invloed hebben op de genactiviteit. Deze verklaring verklaart overigens mijns inziens hooguit een deeltje van het ontstaan van genen verklaart en dan alleen nog maar van piepkleine genen die coderen voor microRNA’s . Lees verder

Hoog cholesterolgehalte kan (mogelijk) genetisch ‘gerepareerd’ worden

Vervetx-recept voor FH

De behandeling in beeld: links de vetbolletjes met b-RNA en gids-RNA, de binnenkomst in de cel en rechts, de verandering van de base A naar G), waardoor het PCSK9-gen onfunctioneel wordt (afb: vervetx.com) (

Drie mensen met een gevaarlijk hoog cholestorlgehalte met een grote kans op op ernstige hart- en vaatziektes zouden van die kwaal zijn genezen door het PCSK9-gen onfunctioneel te maken met een zogeheten basebewerker, een precieze variant van de CRISPR-methode. “Dat is een doorbraak waarmee is aangetoond dat basebewerking in de lever bij patiënten werkt”, zegt Gerald Schwenk van de universiteit van Zürich, die niet bij de proef betrokken was. Of die behandeling echt de oplossing is valt nog te bezien. Lees verder