Hoe vinden cellen de juiste medecellen?

Rijpende eicel

Een rijpende eicel (afb: Weichselberger et.al)

Het begint allemaal met een bevruchte eicel die zich deelt in dezelfde type cellen enzovoort  totdat er verschillen optreden. Dat is het intrigerende begin van wat we vrucht of embryo noemen. Uiteindelijk groeit uit dat klontje identieke cellen een organisme met honderden verschillende celtypen. Dat is op zich al opzienbarend, maar hoe vinden de juiste celtypen elkaar en ontwikkelen die zich tot organen en andere weefsels? Onderzoeksters bekeken die ontwikkeling aan de hand van rijpende eicellen bij fruitvliegjes (een belangrijk proefdiertje of Drosophila melanogaster in het Latijn). Het schijnt iets met de onderlinge aantrekkingskracht tussen cellen te maken te hebben , concludeerden ze, waarbij het eiwit EYA een doorslaggevende rol lijkt te spelen. Lees verder

Via truc laat cel eiwitten met genintstructies binnen

RNA-splitsing

RNA-splitsing. De term splitsing (Engels splicing) is afkomstig van het splitsen van touw (om er een stuk aan te breien) (afb: WikiMedia Commons)

Onderzoekers hebben een truc bedacht om cellen zover te krijgen dat ze eiwitten met ‘geninstructies’ binnen laten via een normaal, natuurlijk proces. Daardoor maken die cellen eiwitten aan die de cel zelf niet aanmaakt door een genetische afwijking. Daarmee zou een nieuwe methode ontwikkeld zijn om genetische ziektes te lijf te gaan met gentherapieën. De onderzoekers denken dan aan ziektes als Alzheimer, sommige vormen van kanker en blindheid. Lees verder

Wat moeten we met een gespiegeld leven?

Ribosoom

Het ribosoom

Links- en rechtsdraaiend hebben we wel eens langs horen komen in reclames, maar de meeste mensen zullen geen idee hebben wat daarmee bedoeld wordt. Het leven is op moleculair niveau nogal zuinig geweest met het gebruik van stoffen. Zo gebruikt het leven maar twintig aminozuren om eiwitten te bouwen uit een veelheid van aminozuren en gebruikt alleen maar linksdraaiende moleculen. Hoe dat komt is niet duidelijk, maar nu willen Chinese onderzoekers een gespiegeld leven creëren: rechtsdraaiend als de natuur linksdraaiend gebruikt. Ze denken dat dat wel eens handig zou kunnen zijn voor geneesmiddelen, want de natuur kent die spiegelvormen niet en zal ze ook niet afbreken, is de gedachte. Zijn ze dan nog wel werkzaam, vraag ik mij dan af… Lees verder

Synthetische genen herprogrammeren plantenwortels

logische gencircuits

Waar Booleaanse logica de biologie ontmoet (afb: Jennifer Brophy, Stanforduniversiteit)

Het zat er al een tijdje aan te komen. We hadden al verhalen over DNA om informatie op te slaan en over DNA-computers en logische circuits van genen, maar nu hebben onderzoekers Booleaanse logica gebruikt om met synthetische (=niet-natuurlijke) genen specifieke patronen van genexpressie (-activiteit) te bereiken. Ze gebruikten die gencircuits om de bouw van de plantenwortels aan te passen (ter meerdere eer en glorie van de economie (=opbrengst), natuurlijk). Lees verder

Het blijft martelen met de CRISPR-methode (of niet?)

Bao

Gang Bao (r) met medewerkers (afb: Rice)

De CRISPR-methode om het genoom te bewerken werd alom toegejuicht als een efficiënte manier om DNA en zelfs RNA te bewerken, maar daar zaten nog wel wat haken en ogen aan. Soms wordt het genoom ook bewerkt op plaatsen waar dat niet de bedoeling was, maar ook als de knip/vervang naar behoren geschiedt, zo lijkt het althans, kan er toch iets misgaan. Die tot nu toe ongeziene missers moeten ook in beeld gebracht worden wil de CRISPR-methode als echt veilig en doeltreffend kan/mag worden ingezet. Lees verder

‘Borgen’ in DNA geven methaanetende bacteriën ‘superkracht’

Jill Banfield en Ken

Jill Banfield en Ken vissen hun eigen onderzoeksmateriaal op in Californië e.o.(afb: Roy Kaltschmidt/Berkeley Lab)

‘Borgen’ zijn in wetenschapsfictie meedogenloze wezens. In de genetica zijn het, sinds kort, delen van bacterieel DNA die, onder meer (?), methaan verorberen. Die Borgen schijnen bij Methanopereden de stofwisseling te versnellen. Leuk weetje voor genetici, natuurlijk, maar er zijn ook onderzoekers die dan meteen denken dat die ‘beestjes’ onze (zelf gecreëerde) problemen kunnen helpen oplossen met het broeikasgas methaan. Lees verder

Weer stofje ontdekt dat immuuntherapie voor kanker effectiever maakt

pHLIP-STING-immuuntherapie

Boven een onbehandelde tumor is erg zuur zo blijkt (groen door fluorescent licht). Onder een met succes behandelde, onschadelijk gemaakte tumor is duidelijk minder zuur (afb: Yana Reshetnyak et. al.)

Het blijft een beetje (veel) martelen met therapieën waarmee kanker moet worden bestreden. Kanker is een verzamelnaam voor een hele reeks woekerziektes, die elk weer hun eigen manier hebben zich te verschuilen of de afweerreacties onschadelijk te maken. Immuuntherapie is gericht op het (meestal genetisch) oppeppen van het afweersysteem, maar die benadering wordt nogal eens gefrustreerd door de misleidingstactieken van de kankercellen. Soms helpen stofjes dat probleem ter zijde te schuiven. Nu is er weer zo’n stofje ontwikkelt, pHLIP, dat bij muisjes met darmkanker bleek te werken. Lees verder

CRISPR-methode opnieuw verbeterd

CRISPR-complex

De structuur van Integrate-CRISPR, waarbij het donkerblauwe deel het cascade-enzym is (Cas), het roze het gids RNA en het lichtblauwe het enzym transposase waarmee stukjes DNA in het genoom kunnen worden ‘gelast'(afb: Sternberg & Fernández Labs, Columbiauniversiteit)

Al jaren schrijf ik in dit blog over de CRISPR-methode, een systeem geleend van bacteriën, om DNA mee te bewerken, maar ik had nog nooit van PAM, een korte nucleotide-sequentie waar de Cas-genschaar van afhankelijk is. Als de genschaar aanwezig is dan moet er zo’n PAM (de M staat voor motief) in de buurt zitten. Dat heeft iets met de oorsprong van de CRISPR-methode te maken, een afweersysteem van bacteriën tegen bacterievirussen (fagen). Er schijnt nu een CRISPR-systeem te zijn ontwikkeld, SpRYgests, dat helemaal geen PAM’s meer nodig heeft, waardoor de methode dus breder bruikbaar is geworden. Lees verder

Erfelijk slechtzienden zien in het donker door gentherapie

Gentherapie Leber-aumorose

De staafjes werkten weer na de gentherapie. Retina is netvlies (afb: Penn)

Gentherapie verbetert nachtzicht bij aangeboren blindheid, staat er in het persbericht, maar dat vind ik een vreemde kop. Blind is blind en blinden zien ook ’s nachts niks dus als iemands nachtzicht verbetert zou dat betekenen dat ie ’s nachts iets zou kunnen zien. Het lijkt dat de opstellers slechtziendheid (eventueel blindheid) bedoelen. Hoe dan ook de gentherapie om het foutieve gen GUCY2D te vervangen resulteerde in de reparatie van de functies van staafjes in het netvlies, zo melden de onderzoekers van de universiteit van Pennsylvania. Lees verder

Synthetische cellen iets bijdehanter gemaakt

DNA-kanalen

Onderzoekers gebruikten kanalen van DNA om stoffen door te laten (afb: Johns Hopkinsuniversiteit)

Al sinds mensenheugnis dromen de kale apen van het scheppen van leven. Tot nog toe heeft die droom geen tastbaar resultaat opgeleverd. Sinds een jaar of twintig met het steeds verder ‘binnendringen’ van de biologische cel heeft die droom meer ‘kleur’ gekregen. We kunnen nu al hele simpele celletjes maken die wat taakjes kunnen verrichten. Nu lijkt het er op dat onderzoekers er voor het eerst (???; as) in geslaagd zijn materiaal en informatie door de celwand te (laten) transporteren. Weer een petieterig stapje op weg naar een synthetische cel die kan meten met de biologische. Lees verder