
Evangelina Vaccaro, een van de tien (afb: Alysia Padilla-Vaccaro)
Evangelina Vaccaro, een van de tien (afb: Alysia Padilla-Vaccaro)
Titan, een chimpanseemannetje (foto: Ian Gilby)
Mensen hebben zich lang zo bijzonder gevonden, en nog steeds, dat ze zich een aparte status in de natuur (het leven ) hebben toegemeten. Waar dat toe kan leiden toont ons tijdsgewricht met zijn klimaatverandering en zijn grote verlies aan biodiversiteit. Toch kun je er niet om heen dat de diersoort mens heel wat meer (wan?)presteert als elke andere diersoort, ook de mensapen. Als ons leven en onze mogelijkheden liggen opgeslagen in ons DNA, zoals nogal eens wordt beweerd, dan kan dat niet kloppen want dat lijkt heel sterk op dat van chimpansees, onze naaste ‘verwanten’. Of juist wel en dan te vinden in het ‘ongeliefde’ deel dat vroeger troep-DNA werd genoemd (maar dat allerminst is)? Lees verder
Omgeprogrammeerde gliacellen. Groen aangegeven is het eiwit NeuN dat karakteristiek is voor neuronen (afb: Lentini et. al.)
Dendrieten zonder (onder) en met SLK. De groene stippen zijn de remsynapsen. (afb: univ. van Bonn)
Het lijkt er op dat het enzym SLK invloed heeft op de ‘boomvorming’ van de uitlopers van hersencellen (dendrieten), met alle gevolgen vandien (MAGV, dus). Daardoor is de activiteit van die cellen moeilijker af te remmen. Ze lijken altijd opgewonden. Epilepsiepatiënten hebben, bijvoorbeeld minder SLK in hun hersencellen dan gezonde mensen. Lees verder
De codoncirkel te lezen van binnen naar buiten. Aan de rand is te lezen waarvoor het codon codeert. Er zijn drie stopcodons (zwarte stippen) die bij micro-organismen wel kunnen coderen voor een afwijkend aminozuur
Normaal coderen drie opeenvolgende basen (onderdeel van de DNA-bouwstenen), het zogeheten codon, voor een van de twintig aminozuren waaruit de natuurlijke eiwitten bestaan. Synthetisch biologen zijn al langer om aan die genetische code die in de natuur geldt te knutselen. Met een codon van vier basen kun je een cel andere eiwitten laten aanmaken die ons, is de mens, misschien van dienst kunnen zijn als geneesmiddelen e.d. Lees verder
De kweek van traankliertjes (afb: Cell Stem Cell
Toen Shinja Yamanaka en collega’s zo’n vijftien jaar geleden ontdekte hoe je gewone cellen kon omprogrammeren tot (pluripotente) stamcellen groeide de hoop dat daarmee therapeutisch een hoop kon worden gedaan. Die pluripotente stamcellen kon je omvormen tot alle celtypen die het organisme mens telt (zo’n tweehonderd). Tot dan toe moesten onderzoekers hun stamcellen putten uit embryo’s of ‘destilleren’ uit de navelstreng. Vooral dat eerste lag ethisch moeilijk. De resultaten op het gebied van stamceltherapieën zijn vooralsnog niet erg spectaculair, maar er lijken betere tijden aan te komen. Zou er, bijvoorbeeld, een stamceltherapie komen voor Parkinsonpatiënten (om maar iets te noemen)? Lees verder
Een massaspectrometer voor de bepaling van eiwitten in een cel (afb: Northeastern University)
Michael Chopin (l) en Stephen Nutt (afb: WEHI)
Afweercellen die ‘wacht’ lopen in het lichaam om te controleren of zich ergens gevaar ophoudt lijken heel verschillend te reageren op het verwijderen van eiwitten die de genactiviteit reguleren. Die ontdekking zou gevolgen kunnen hebben voor de ontwikkeling van medicijnen (en natuurlijk wordt daar dan altijd kanker bij genoemd). Lees verder
In hersentumoren maken de cellen verschillende stadia door met waarbij hun eigenschappen veranderen (afb: Molecular Systems Biology)
We hebben het over kanker, maar dat is eigenlijk een verzamelnaam van een woekerziekte met bijna net zoveel verschijnings-vormen als we weefselsoorten hebben. Onderzoekers van, onder meer, de universiteit van Uppsala (Zwe) zeggen met een nieuwe methode er achter gekomen te zijn (aangeduid met het letterwoord STAG) waarom kankercellen zich zo verschillend (re)ageren. Het lijkt er op dat kankercellen verschillende stadia doormaken. Ze onderzochten dat bij hersenkankercellen (glioblastoom) en vonden dat de cellen zowel een hiërarchisch als flexibel gedrag vertoonden en dat elk stadium zijn eigen ‘woekerkracht’ kent. Die ontdekking zou iets voor de behandeling van de diverse kankersoorten kunnen betekenen. Lees verder
Michael Elowitz (afb: quantamagazine.org)
Cellen communiceren met elkaar. Die communicatie is wezenlijk voor het overleven van een organisme maar hoe dat precies gebeurt is nog verre van duidelijk. Het lijkt in ieder geval niet op de simpele manier waarop elektronische schakelingen werken. De manier is aanzienlijk ingewikkelder. Het antwoord op de bovenstaande vraag luid dan ook: weinig (veel te weinig). Eiwitten ‘doen het’ met veel meer andere eiwitten dan tot nu toe voor mogelijk is gehouden. Ze zijn nogal ‘overspelig’ Lees verder