Niet eerder waargenomen embryocel beschermt ontwikkeling vrucht (wellicht)

mensembryo

Mensembryo

Het persbericht spreekt over een nieuw celtype, maar dat is natuurlijk kul. Dat was alleen nog niet eerder ontdekt zoals er nog zoveel te ontdekken valt aan het bijster ingewikkelde systeem dat leven heet, zeker als het over meercellige organismen gaat. Dat ‘nieuwe’ celtype zou ervoor zorgen dat het embryo zich op de juiste manier ontwikkelt, speculeren de onderzoeksters. Daarbij gaan die cellen zover zichzelf op te offeren voor het goede verloop van die ontwikkeling. Lees verder

Eiwitten in cellen gespoten met bacteriële ‘spuit’

Bacteriële spuit

De bacteriële spuit, door de onderzoekers PVc gedoopt. Aan de rechter kant met de naald(‘spike’) zitten ook de staartvezels (’tail fibres’) De lading (eiwitten e.d.) komen links terecht (afb: F. Zhang et. al)

Vaak worden er lam gemaakte virussen gebruikt om allerlei ‘spullen’ in cellen af te leveren, zoals CRISPR-gereedschap, maar ditmaal leenden de onderzoekers een methode van bacteriën om eiwitten in (menselijke) cellen te spuiten. Daartoe hebben sommige bacteriën en groot molecuul dat fungeert als een soort injectienaald en onmiddellijk hebben onderzoekers het dan weer over een ‘doorbraak’ (van het celmembraan misschien). De ‘spuit’ zou, met enige veranderingen, ook kunnen fungeren om het werk van die lamme virussen over te nemen, denken de onderzoekers.
Lees verder

Zijn kunstmatige energieproducerende cellen in aantocht?

kunstmatige mitochondriën en chloroplasten

Kunstmatige mitochondrion en chloroplast (afb: Kwanwoo Shin et. al)

Al tijden kijken menselijke onderzoekers verlekkerd naar de fotosynthese, dat kunststukje van de natuur. Nu kan je natuurlijk sleutelen aan dat systeem, wat al gebeurt, maar je zou ook kunstmatige cellen kunnen maken die energie produceren. Nu hebben onderzoekers eens bekeken wat de belangrijkste ingrediënten zijn om kunstmatige mitochondriën en bladgroenkorrels (chloroplasten) te maken en ze hebben een schema gemaakt hoe zoiets er uit zou (kunnen) zien. Lees verder

DREAM zou reparatie genoomschade bemoeilijken

Er wordt alom volop geëxperimenteerd met het herstel van genetische schade, maar dat schijnt bij geslachtscellen beter te werken dan andere celtypen (ik=as wist weer eens van niks). In cellen van mensen maar ook die van muisjes of kleine wormpjes (Caenorhabditis elegans) zou het eiwitcomplex DREAM dat bemoeilijken. De onderzoekers schijnen er ook in geslaagd te zijn dat eiwitcomplex te blokkeren. Wordt nu het ‘redigeren’ van het genoom makkelijker (dat zou je verwachten)? Lees verder

Stamcellen hebben een mooi systeem om niet te verouderen

Afvalverwerking bloedstamcellen

Bloedstamcellen verzamelen hun eiwitafval in aggresomen (groen) als appeltje voor de dorst. Gewone cellen gebruiken daar de veel snellere proteasomen voor (afb: Signer et. al)

We hebben overal in ons lijf min of meer gespecialiseerde stamcellen die zich kunnen omvormen tot gespecialiseerde cellen als een vorm van onderhoud van het organisme (ons lijf). Om veroudering tegen te gaan moeten die stamcellen voortdurend de troep (misvormde eiwitten) opruimen en daar schijnen bloedstamcellen een opmerkelijke oplossing voor te hebben, anders dan gewone cellen dat doen. Wellicht dat die ontdekking is kan betekenen voor het gezond houden van andere stamcellen en wellicht ook neuronen. Lees verder

RNA-vaccin bij proefdieren effectief tegen pestbacterie

Pestbacterie

Pestbacterie (paars) (afb: WikiMedia Commons)

Onderzoekers van de universiteit van Tel Aviv zouden voor het eerst een werkend RNA-vaccin hebben ontwikkeld tegen een bacterie. De bacterie in kwestie veroorzaakt de pest (Yersinia pestis). Die schijnt in toenemende mate ongevoelig te zijn voor antibiotica.
Lees verder

Het lijkt mogelijk extra hersencellen te ‘fokken’

Nieuwe hersencellen

In de getande winding in de hippocampus werden nieuwe neuronen aangemaakt (rood). De hersenstamcellen zouden de groen gemerkte cellen zijn (afb: Knoblochlab)

Al tientallen jaren wordt er gestreden over de vraag of er nog nieuwe hersencellen (neuronen) ontstaan na de geboorte. Nu schijnt de mening te overheersen dat dat wel degelijk kan gebeuren in bepaalde delen van de hersens. Het lijkt er op dat onderzoekers in Zwitserland een truc hebben gevonden om in de getande winding in de hippocampus van de hersentjes van muisjes slapende hersenstamcellen uit hun inactieve toestand te halen. Meteen speculeren de onderzoekers al over de rol die deze ’truc’ zou kunnen spelen bij de behandeling van hersenziektes zoals Alzheimer of Parkinson, waarbij hersencellenafsterven. Lees verder

Ook RNA-methylering bepaalt expressie van genen, maar hoe?

Eiwitproductie

Via boodschapper-RNA worden stukjes DNA in het ribosoom omgezet in eiwitten (afb.: vib.be)

Ooit ten tijde van het ontrafelen van de opbouw van het menselijk genoom zo’n twintig jaar geleden leefde de gedachte, ook onder wetenschappers, dat we daarmee de ‘handleiding’ van het (menselijk) leven hadden ontcijferd. Niets is minder waar. Genexpressie, welke gen is actief en in welke mate, speelt een wezenlijke rol in het proces dat we leven noemen. Nu hebben onderzoekers rond Chuan He van de universiteit van Chicago wat meer zich gekregen op een van de processen die de genexpressie sturen: de RNA-methylering. Lees verder

Weer een mechanisme ontdekt voor kanker (?)

Celdeling: mitose en meiose

Mitose is de gewone celdeling. Meiose is de rijpingsdeling van geslachtscellen.  Beide delingen komen voor bij eukaryote cellen zoals ook zoogdieren hebben. De binaire deling (links) komt voor bij prokaryote cellen als bacteriecellen (afb: WIkiMedia Commons)

Onderzoekers van de universiteiten van Göttingen en van Koblenz zouden weer een mechanisme hebben ontdekt waardoor cellen verworden tot kankercellen, waarvoor de ‘regels’ voor gezonde celdeling niet langer gelden. Het zou gaan om de vermeerdering van het aantal startplaatsen die normaal zorgen voor een correct aantal chromosomen in de cellen die ontstaan uit celdeling. Daardoor wordt de genetische informatie min of meer lukraak over de chromosomen en kan zelfs het aantal chromosomen afwijken van die in gezonde cellen. Lees verder

Muisjes genetisch ‘verjongd’ (?)

Celveroudering tegengaan

Celveroudering zou zowel genetisch (zie boven) als ‘mechanisch’  (zie Geleerd Uitschot) zijn tegen te gaan. Het harde bewijs is nog niet geleverd (afb: Salkinstituut/Cell)

Het bedrijf Rejuvenate Bio uit San Diego meldt op bioRxiv, in nog niet beoordeelde voorpublicatie, dat oudere muisjes na een genetische behandeling met drie zogeheten Yamanka-factoren (SKO)van de vier groeifactoren gebruikt voor het ‘herprogrammeren’ van cellen, nog achttien weken leefden, terwijl de controlegroep gemiddeld niet verder kwam dan negen weken. In Cell publiceerden onderzoekers onder aanvoering van Jae-Hyun Yang van de Harvarduniversiteit een artikel over het testen van een theorie van zijn mentor David Sinclair over veroudering, waarbij ook de OSK-factoren een hoofdrol speelden. Lees verder