Buitenchromosomaal DNA belangrijk voor therapieresistentie kanker (?)

Howard Chang

Howard Chang (afb: Stanforduniversiteit)

Howard Chang van Stanford en medeonderzoekers denken te weten hoe het kankercellen lukt om immuun te worden voor behandelingen hoe die uitzaaien: buitenchromosomaal DNA, stukjes DNA, die geen deel uitmaken van het genoom. Dat zou het kankeronderzoek drastisch veranderen, denkt Chang, maar dat is al zo vaak gezegd dat zo’n uitspraak zo langzamerhand nietszeggend (-voorspellend) is geworden. Lees verder

Onderzoekers werken aan viruswerende cellen

George Church, de 'aartsvader' van de synthetische biologie

George Church, de ‘aartsvader’ van de synthetische biologie (afb: Harvard)

In 2016 startte het Genoomproject-schrijf (GP-write), met oorspronkelijk nog de H van Human (menselijk) erbij. Dat beoogde het van nul af aan opbouwen van hele (menselijke) genomen. Vooralsnog was dat een beetje al te ambitieus. Ook was er argwaan over mensen die uit het lab zouden komen. Onlangs hebben de oprichters hun ambities ietwat bijgesteld. Op een bijeenkomst in Boston maakten ze bekend om viruswerende cellen te gaan ontwikkelen. Dat zal nog een hele klus worden (als dat al lukt).
Lees verder

Maken springende genen onze hersens uniek?

LINE1's, springende genen', voegen niet alleen iets toe aan DNA maar verwijderen ook stukken

‘Springende genen’ (LINE1) veroorzaken breuken in het DNA (hier met groen aangegeven) (afb: Salk)

Alle cellen in ons lichaam hebben hetzelfde DNA, leren we op school. De laatste tijd is steeds meer bewijs gekomen dat die regel niet helemaal opgaat. Nu blijkt dat er bij hersencellen nogal wat variëteit is in het DNA. Elke hersencel is een beetje anders, stellen onderzoekers van, onder meer, het Amerikaanse Salk-instituut. Maken die ‘springende genen’ ons uniek? Of misschien wel ziek? Lees verder

DNA pluripotente stamcellen vouwt verkeerd (?)

De ruimtelijke structuur van DNA (warmtekaarten)

De ‘warmtekaart’ verraadt’ de nabijheid van stukken DNA in de ruimte. Die kaarten zijn de afgelopen jaren steeds nauwkeuriger geworden (eronder ter vergelijking de ontwikkeling in de yv-techniek) (afb: univ.v.Pennsylvania)

Sinds een jaar of tien geleden onderzoekers een manier hebben gevonden om van rijpe cellen weer stamcellen te maken, is de hoop gegroeid dat het medisch arsenaal aanzienlijk kan worden uitgebreid met, onder meer, de synthese van organen. Die wat genoemd wordt pluripotente stamcellen blijken nog wel eens ‘uit de bocht’ te vliegen en zich te ontwikkelen tot kankercellen. Onderzoekers van, onder meer, de universiteit van Pennsylvanië denken dat die ‘misstappen’ te maken kunnen hebben met het vouwpatroon in het DNA. Lees verder

De nieuwe beestjes JCVI-syn3.0 van Craig Venter

De 'nieuwe' JCVI-syn3.0-bacterie

De ‘nieuwe’ JCVI-syn3.0-bacterie

Onderzoekers zijn al heel lang bezig het minimale genoom te achterhalen. Welk DNA-molecuul bevat net genoeg genen om leven mogelijk te maken. Het J. Craig Venter-instituut slaagde er in 2010 in het genoom van de bacterie Mycoplasma mycoides na te bouwen, maar nu zijn onderzoekers van hetzelfde instituut er in geslaagd een bacterie ’te bouwen’, JCVI-syn3.0 gedoopt, met een zelf ontworpen, minimaal genoom met maar 473 genen (de mens heeft er zo’n 20 000). Het is, zo lijkt het, het eerste kunstmatige genoom, even voorbijgaand aan al die genetisch gemanipuleerde, vooral, micro-organismen die de afgelopen jaren in het lab en bij bedrijven zijn ‘ontwikkeld’. Vooralsnog zit dat nieuwe genoom nog in een van een ander organisme geleende cel. Lees verder

Hoe veilig is synthetische biologie?

Pamel Silver, Harvard

Pamela Silver van de Harvard-universiteit

Niet zo lang geleden riepen Engelse onderzoeksorganisaties op tot een maatschappelijke discussie over het knutselen aan de genen van embryo’s, maar de discussie moet natuurlijk veel breder zijn dan dat. We denken dat we onderhand knap genoeg zijn om de genetica naar onze hand te zetten, maar is dat ook zo? Gentherapie lijkt een fraaie methode om allerlei ziektes te bestrijden en handicaps weg te nemen, maar het gaat nog wel eens, onvoorspelbaar, fout. Hoe zit het eigenlijk met die veiligheid? Dan hebben niet eens over de ethische kwesties die kleven aan de synthetische biologie. In het blad Current Opinion in Chemical Biology stellen Pamela Silver en Tyler Ford van de Harvard-universiteit dat synthetische biologie op het punt staat de praktijk in te gaan en dat er veel aandacht naar dat veiligheidsaspect zal moeten gaan. Lees verder

Genoom en transcriptoom van een cel af te lezen

Celdeling en mutaties

Door celdeling ontstaan fouten. Ook zuigelingen hebben al een groot aantal genetisch enigszins afwijkende cellen (afb: Tarryn Porter)

Onderzoekers van de Katholieken Universiteit Leuven en van de universiteit van Oxford (VK) hebben een techniek ontwikkeld waarmee tegelijkertijd het genoom is af te lezen en het zogeheten transcriptoom), het totaal aan boodschapper-RNA-moleculen in een cel. Dat is mogelijk in een enkel cel. Ze deden dat voor ruim 200 menselijke en muizen cellen en kwamen er zo achter dat als een cel na deling een chromosoom wint of verliest, delen van het DNA actiever of minder actief worden. Het vermoeden bestond al, maar niet de methode om dat waar te nemen, zo stellen de onderzoekers.
Lees verder

Een muis is geen mens maar is als model bruikbaar

Mensgenoom vergeleken met muisgenoom

De genen op chromosoom-1 van de mens met die in het muisgenoom. Die blijken verdeeld over verschillende chromosomen

Een muis is geen mens en toch worden muizen vaak als proefdier genomen als voorfase op de klinische proeven. De vraag is steeds of muisproeven een goede indicatie zijn voor de mens en nu heeft een grote groep onderzoekers (136) het functionele muizengenoom doorgespit en dat vergeleken met het menselijk erfgoed. Een belangrijk deel van de muizengenen komen bij mensen niet voor, maar een groot deel komt ook wel weer overeen. Dat zou op zijn minst moeten leiden tot enige voorzichtigheid aangaande de geldigheid van muisproeven voor mensen. “Lang is gedacht wat bij de muis ontdekt wordt dat dat waarschijnlijk ook zo is bij mensen”, zegt Bing Ren van de universiteit van Californië in San Diego, een van de 136. “Dat idee moet systematisch worden geëvalueerd en gewogen.”
Lees verder

Veel hersencellen hebben afwijkend genoom

Lang is gedacht, en ik denk het nog steeds, dat alle cellen in ons lichaam hetzelfde DNA hebben. Onderzoekers van het Amerikaanse Salk-instituut in La Jolla hebben die zekerheid nu op losse schroeven gezet. Een groot deel van onze hersencellen, zo heeft hun studie aannemelijk gemaakt, heeft afwijkend erfgoed dat ze, die cellen, uniek maakt. Dat zou ook voor andere celtypen kunnen gelden (en waarom ook niet?) Lees verder

Nieuw genoom ‘geschreven’ voor E. coli

Eiwitproductie

Via boodschapper-RNA worden stukjes DNA in het ribosoom omgezet in eiwitten (afb.: vib.be)

Het is al weer een paar jaar geleden (2010) dat Hamilton Smith en zijn mede-werkers van het Venter-instituut het erfgoed (DNA) van een bacterie (Mycoplas-ma mycoides) hebben ‘nagebouwd’, met wat eigen grapjes er in (stukjes tekst uit het boek Ulysses van James Joyce). Nu schijnen onderzoekers er bij de universiteiten van Harvard en Yale (VS) in geslaagd te zijn het genoom van een bacterie (een E. coli) helemaal te herschrijven, waardoor die ongevoelig is geworden voor virussen. “Dit is de eerste keer dat de genetische code fundamenteel is veranderd”, stelt onderzoeker Farren Isaacs, moleculair bioloog bij Yale. “Door een organisme met een nieuwe genetische code te maken hebben we de mogelijkheden biologische functies aan te passen aanzienlijk uitgebreid.” Het lijkt op het begin van een tijdperk.
Lees verder