DNA-tests steeds meer binnen bereik gezondheidszorg

Mensengenoomproject

Het logo van het mensengenoomproject (afb: WikiMedia Commons)

Het mensengenoomproject dat in 2003 werd afgerond kostte nog een paar miljard dollar. Sindsdien is er veel veranderd en het zal niet meer lang duren voordat DNA-tests zullen gaan behoren tot het gewone diagnoseinstrumentarium in de gezondheidszorg, mede ook door een recent ontwikkeld programma van onderzoekers aan het EMBL en de universiteit van Edinburgh. Lees verder

Een E. coli met een geheel synthetisch genoom

Bacterie met synthetisch DNA

Bacterie, model E. coli, met synthetisch DNA (afb: univ. van Cambridge)

Het is natuurlijk al eerder gebeurd dat bacteriële genomen in het lab zijn ‘opgebouwd’ en niet in/door het beestje zelf, maar de New York Times (of althans scribent Carl Zimmer) denkt dat wat onderzoekers van de universiteit van Cambridge hebben klaargespeeld een (nieuwe) mijlpaal is in de ontwikkeling van de synthetische biologie (na mijlpalen als de herprogrammering van rijpe cellen tot stamcellen en de CRISPR-methode). Het synthetisch opgebouwde genoom van de Escherichia coli-bacterie is vier keer langer en veel complexer dan van een natuurlijke E. coli..
De bacteriën met het synthetische genoom leven, maar hebben een vreemde vorm en reproduceren erg langzaam (dat zal wel daar dat ongewoon lange genoom komen, denk ik dan; as). Dit onderzoek zou kunnen leiden tot, bijvoorbeeld, medicijnproducerende bacteriën, maar zou ook licht kunnen werpen op de ontwikkeling van de genetische code in de loop van de geschiedenis van het leven. Volgens synthetisch bioloog Tom Ellis van het Imperial College in Londen, die niks met het onderzoek te maken had, is dit inderdaad een mijlpaal. “Niemand heeft dit eerder gedaan als je praat over grootte en aantal veranderingen.”
Negen jaar geleden bouwden onderzoekers een synthetisch genoom dat eenmiljoen baseparen (DNA-letters) lang was. Het nieuwe genoom is vier keer zo lang en opgebouwd met behulp van nieuwe technieken onder leiding van Jason Chin.
Drie opeenvolgende DNA-letters (A, C, G, of T) coderen voor een van de twintig verschillende aminozuren waaruit eiwitten zijn opgebouwd. Je kunt met die vier letters 64 tripletten (of codons) maken. Dat betekent dat er verschillende codons zijn voor een bepaald aminozuur.

Een van de vragen die Chin zich stelt is: Vanwaar die overdaad? Dat deed hem besluiten zelf een ‘versimpeld’ genoom te bouwen.
In de natuur coderen zes codons voor het aminozuur serine. In Chins genoom gebruikte hij er maar vier. Er zijn drie zogeheten stopcodons. In het synhtetische genoom worden er maar twee gebruikt. In feite hebben de onderzoekers het E. coli-genoom doorgevlooid met een zoek&vervang-opdracht. We praten dan over 18 000 locaties op het bacterie-DNA.

Binnensmokkelen

Een genoom bouwen is een ding, maar hoe smokkel je dat een bacteriecel binnen? Het genoom was veel te lang om het in een keer in de cel te proppen, dus werd het genoom bij stukjes en beetjes naar binnen geloodst en het oude verwijderd.
De bacterie overleed daar niet aan tot grote opluchting van de onderzoekers. Het beestje bleef leven en werd langer dan de gewone bacterie. Chin wil nog meer codons verwijderen en kijken hoe ver hij kan gaan voor het leven er de brui aan geeft….

Bron: New York Times

Embryonale stamcellen gemaakt van huidcellen

Huidcellen muisjes omgezte on drie typen embryonale stamcellen

Huidcellen van muisjes werden omgezet in drie typen embryonale stamcellen. Bepalend daarbij was de activiteit van het Eomes-gen en het Ersrrb-gen (afb: univ. van Jeruzalem)

Onderzoekers van de universiteit van Jeruzalem zeggen een manier gevonden te hebben om uitgaande van huidcellen embryonale stamcellen te maken die te vergelijken zijn met de drie typen stamcellen van een vroege embryo. Tot nu toe konden rijpe cellen zoals huidcellen worden geherprogrammeerd tot een minder ‘maagdelijke’ vorm van stamcellen, de pluripotente (de voorloper van alle celtypen in ons lichaam). Zal op een dag een zuigeling geboren kunnen worden die is ontstaan uit huidcellen? Lees verder

Speciale zinkvingers houden springende genen in toom

Zinkvingers

Een voorbeeld van een zinkvingereiwit (afb: Wikimedia Commons)

Niet eens zo heel lang geleden, zo rond de eeuwwisseling, werd gedacht dat als we eenmaal het DNA hadden ontcijferd we het geheim van de blauwdruk van het leven zouden kennen. Niets is minder waar. Het DNA-molecuul stelt onderzoekers nog steeds voor raadselen. Een van die raadsels wordt gevormd door wat genoemd worden springende genen (of transposonen) die niet erg honkvast zijn in het genoom. Er zijn zo’n 4’5 miljoen van die ‘springers’ in ons genoom en stukje bij beetje wordt hun rol in het ingewikkelde DNA-‘complex’ onthuld. Onlangs ontdekten EPFL-onderzoekers dat zinkvingers een cruciale spelen in het intomen van die springers. Lees verder

Eerste ‘robot’ met een stofwisseling gemaakt

DNA-'robotjes' met 'stofwisseling'

De ‘stofwisseling’ (afbreken en opbouwen) die wordt gecreëerd in een microvloeistofsysteem met obstakels (C) (afb: Cornell-univ.)

Het is wat je robots noemt. Uitgaande van DNA hebben onderzoekers van het Amerikaanse Cornell-universiteit nano-botjes met een ‘stofwisseling’ gemaakt, die die zich kunnen verplaatsen en wellicht ook kunnen evolueren via genetische mutaties. Het lijkt heel in de verte op iets wat in werkelijkheid al bestaat: leven.
Lees verder

Geen 1-aprilgrap: bacteriegenoom uit de computer

Caulobacter crescentus

Caulobacter crescentus

Ik ga er maar even van uit dat een serieus Duits blad als bdw geen grappen maakt (ik heb er tenminste nooit een in gelezen de afgelopen 20, 25 jaar). Dit nieuws zat er natuurlijk aan te komen. Al eerder is een bacteriegenoom, met wat ‘versierselen’, in zijn geheel gesynthetiseerd, maar toen ging het om een (lichte afwijking van een) bestaand bacteriegenoom. Nu hebben onderzoekers een bacteriegenoom drastisch ingekort en aangepast. Het grootste deel van de genen werkt. Wat nu, Pietje Cru? Lees verder

Synthetische genschakelaar gemaakt

Genschakelaar

Uit/aan/uit (afb:Chemical Science)

Onderzoekers van de Tsjechische academie van wetenschappen en van de Karelsuniversiteit hebben een (synthetisch) molecuul gemaakt dat in staat is om genen aan of uit te zetten. Vooralsnog hebben ze de genschakelaar alleen nog maar ‘in vitro’ (met DNA-moleculen in een regeerbuis) uitgeprobeerd en niet in levende cellen. Lees verder

Ja hoor, daar is ie weer: de mammoet! (tigste keer)

restanten van mammoet Yuka

De restanten van de in 2010 opgegraven mammoet Yuka (afb: Nature)

Een vrij gaaf exemplaar van een babymammoet (afb: RT)[/caption]Al tijden zijn er wetenschappers die dromen van de wederopstanding van de mammoet. Onderzoekers in Japan zijn zo ver niet gekomen. Ze haalden kernen van cellen van de in 2010 in Rusland gevonden mammoet Yuka, die 28 000 stijfbevroren is geweest, en hebben die in muizeneicellen geplaatst. De muizencellen met de mammoetkern ontwikkelden zich niet tot een mammoetvrucht, zoals de onderzoekers gehoopt hadden, maar vertoonde toch enige tekenen van leven (biologische activiteit), zo meldden ze in Nature. Lees verder

Onderzoekers vinden ‘regeneratieknop’ (van een platworm)

De regeneratie van een wormpje

Mansi Srivastava en Andrew Gehrke (afb: Harvard)

Sommige gewervelde dieren zijn in staat hele ledematen weer aan te laten groeien. ‘Lagere’ diersoorten als wormpjes schijnen zelfs een nieuwe ‘kop’ met hersens te krijgen als de oude is verdwenen. Hoe hoger je in de soortenboom terecht komt hoe geringer het regeneratievermogen is. De mens heeft zelfs weefsels (hart en hersens) die bij beschadiging helemaal niet meer herstellen. Nu denken onderzoekers die ‘regeneratieknop’ gevonden te hebben: EGR. Tenminste, dat gen regel de regeneratie bij een bepaalde platworm. Lees verder

Niet-coderend DNA kan zich snel omvormen tot gen

Niet-coderend DNA

Niet-coderend DNA is niet bepaald nutteloos

Het zit goed in elkaar en het zit vrij ingewikkeld in elkaar dat ‘per-ongelukke’ systeem dat leven heet (ik kan het niet vaak genoeg zeggen). Het lijkt er op dat de ideeën over de manier waarop levende organismen nieuwe eiwitten gaan aanmaken enigszins herzien moeten worden. Uit bestudering van het erfelijk materiaal van rijstplanten bleek dat niet-coderend DNA zich (relatief) snel kan omvormen tot coderend DNA (en dus tot genen). Lees verder