Genen kunnen ook ‘uit het niks’ komen

Kabeljauw heeft 'antivriesgen'

Kabeljauw heeft een de novo-‘antivriesgen’ (afb: WikiMedia Commons)

Lang is gedacht dat nieuwe genen varianten van oude genen zijn, maar het wordt steeds duidelijker dat de natuur veel vindingrijker is dan dat. Genen kunnen ook zo maar ‘uit het niks’ ontstaan, uit stukken en brokken niet-coderend DNA. Lees verder

Puntmutatie in duister-DNA zou kanker veroorzaken (?)

Kankerspecialist Lincoln Stein

Lincoln Stein (afb: OICR)

Onderzoekers in Canada denken te weten dat een puntmutatie in het troep-DNA, schijnt tegenwoordig duister-DNA genoemd te worden, kanker zou kunnen veroorzaken. Die mutatie zou iets hebben te maken met de vorming van boodschapper-RNA bij het afschrijven het genoom. Ik vraag me, als oprechte leek op elk terrein, af hoe serieus die ontdekking is. Het zou gaan om diverse typen kanker. De onderzoekers hebben het dan meteen heel optimistisch over een nieuwe manier om kanker aan te pakken…. Hoe dan ook, deze ontdekking lijkt te illustreren hoe weinig we nog van deze materie weten. Lees verder

Bacteriën maken nieuwe genen uit ‘troep-DNA’

Ontstaan nieuwe genen in E. coli's

Nieuwe genen onstaan bij E. coli-bacteriën uit willekeurige sequenties in het ‘niet-coderende’ DNA. In het ringvormige DNA van de bacterie plaatsten onderzoeker een halfmiljard willekeurige stukjes DNA (afb: univ. van Uppsala)

Een van de (vele) vragen die ontwikkelingsbiologen zich stellen is hoe nieuwe genen ontstaan. Onderzoekers in Zweden denken nu te weten hoe dat bij bacteriën werkt. Die neiuwe genen kunnen worden gevormd uit DNA-sequenties die functieloos zouden zijn, ooit junk(=troep)-DNA genoemd. Lees verder

DNA-versnipperaar gaat verder dan CRISPR/Cas9-schaar

Cas3 versnippert lange delen DNA

Het ‘recept’ voor de CRISPR/Cas3-aanpak (afb: Zhang Lab)

Als we het over de CRISPR-methode hebben dan het hebben we het over de ‘genschaar’ Cas9, die stukken uit DNA knipt, maar de CRISPR-methode kent meer genscharen. Nu schijnen onderzoekers van, onder meer, de universiteit van Michigan een andere bacteriële genschaar ontdekt te hebben die lange stukken DNA opzoekt, wegknipt en versnippert: type I CRISPR/Cas3. Dat biedt nieuwe mogelijkheden voor genoombewerking, denken ze, maar ook voor de bestudering van het niet-coderende deel van DNA (98%). Lees verder

Niet-coderend DNA kan zich snel omvormen tot gen

Niet-coderend DNA

Niet-coderend DNA is niet bepaald nutteloos

Het zit goed in elkaar en het zit vrij ingewikkeld in elkaar dat ‘per-ongelukke’ systeem dat leven heet (ik kan het niet vaak genoeg zeggen). Het lijkt er op dat de ideeën over de manier waarop levende organismen nieuwe eiwitten gaan aanmaken enigszins herzien moeten worden. Uit bestudering van het erfelijk materiaal van rijstplanten bleek dat niet-coderend DNA zich (relatief) snel kan omvormen tot coderend DNA (en dus tot genen). Lees verder

‘Troep’ in DNA zou schimmels helpen overleven

Gistcellen

Gistcellen (afb: Science)

Zoals bekend is het overgrote deel (98%) van DNA ‘troep’, ‘rotzooi’. Zo werd het aanvankelijk aangeduid, omdat dat niet-coderende DNA, zoals het tegenwoordig wat netter heet, niet codeert voor eiwitten. Nu denken onderzoekers gevonden te hebben dat bepaalde niet-coderende delen van een gen, de introns (onderbrekende stukjes), de cellen helpen te overleven in zware tijden. Bij gistcellen althans. Lees verder

We hebben 20 000 of nee 46 831 genen. Uhhh?

DNA-trapHoeveel genen heeft een mens? Zo’n 20 000 is nu de schatting. Is dat zo? Volgens die berekening is het overgrote deel van ons DNA ‘troep’ en dat is het allesbehalve. Wat noemen we genen? Daar begint het probleem al. Biostatisticus Steven Salzberg van de Amerikaanse John Hopkins-universiteit is eens gaan tellen en komt op 46 831, waarvan er 21 036 coderen voor eiwitten. Daarbij moet wel gezegd worden dat hij de stukken die coderen voor RNA dat niet dient als mal voor eiwitten ook hebben meegeteld. Lees verder

‘Troep-DNA’ houdt ons genoom bij elkaar

Niet-coderend DNA

Niet-coderend DNA is niet bepaald nutteloos

Ooit werd het troep (‘junk’) genoemd, dat deel van het menselijk DNA dat niet codeert voor eiwitten (zo’n 98%), maar zo langzamerhand komen wetenschappers er achter dat het allemaal wat ingewikkelder in elkaar zit. Nu denken onderzoekers van de universiteit van Michigan (VS) ontdekt te hebben dat die ‘troep’ een belangrijke functie heeft in het bij elkaar houden van het genoom. Onder andere, voeg ik daar dan op eigen ‘gezag’ aan toe. Lees verder

De 200 mutaties van niet-coderend DNA die er toe doen

OperatiekamerVoor lezers van dit blog mag bekend worden verondersteld dat ze weten dat het overgrote deel van het genoom bestaat uit niet-coderend DNA (nc-DNA). Het coderende deel, de genen, maken maar 2% uit van ons erfgoed. Het overgrote deel van de mutaties die worden geassocieerd met kanker komen uit dit niet-coderende deel. Het lijkt er op dat lang niet al die mutaties van belang zijn. Onderzoekers hebben nu een 200-tal nc-mutaties aangemerkt die er daadwerkelijk toe zouden doen.
Lees verder

Troep-DNA van belang bij omvang schade beroerte

Ratten ingespoten met RNA dat FosDT blokkeerde minder schade door beroerte

Ratten ingespoten met RNA dat FosDT blokkeerde hadden aanzienlijk minder schade door een beroerte dan die dat niet kregen toegediend (afb: Raghu Vemuganti, Suresh Mehta en TaeHee Kim van de universiteit van Wisconsin-Madison)

Het was natuurlijk al wat langer duidelijk dat het deel van DNA dat niet codeert voor eiwitten geen troep is. Nu blijkt dat RNA dat afkomstig is van dat niet-coderende DNA (zoals het tegenwoordig vaak genoemd wordt) een grote rol speelt bij de schade die ontstaat door een beroerte. Door een specifiek niet-coderend RNA-molecuul te blokkeren, dat ze FosDT hadden gedoopt, bleek onderzoekers dat de schade door een (nagebootste) beroerte bij ratten aanzienlijk kleiner was dan als ze FosDT zijn/haar gang lieten gaan. Lees verder