B-RNA-vaccins schijnen ook onbedoelde eiwitten aan te maken

Codoncirkel

De codoncirkel te lezen van binnen naar buiten. Aan de rand is te lezen voor welk aminozuur het codon codeert. Er zijn drie stopcodons (zwarte stippen) die bij micro-organismen wel kunnen coderen voor een afwijkend aminozuur (afb: WikiMedia Commons)

Boodschapper-RNA-vaccins zijn na de successen bij de bestrijding van het coranavirus de hemel in geprezen, maar kennelijk zorgen ze er ook voor dat er eiwitten worden aangemaakt in de ‘bezochte’ cellen die nooit de bedoeling zijn geweest. Vooralsnog is onduidelijk of die in kleine hoeveelheden aangemaakte eiwitten nadelig kunnen zijn voor het herstel. De onderzoekers hebben ook een idee hoe het beter kan. Lees verder

Ingewikkelder genetisch systeem lijkt mogelijk maar ook erg lastig

bRNA-translatie in ribosoom

De bRNA-translatie in het ribosoom (afb: WikiMedia Commons)

Hoewel de diversiteit van het leven een aanzienlijk variëteit kent komen de genetische basisregels van al die verschillende vormen overeen. DNA bestaat uit vier ‘letters’ (nucleotiden), drie van die ‘letters’ coderen voor een van de twintig aminozuren die de natuur gebruikt en met die aminozuren aaneengeschakeld vorm je eiwitten die het leven leven geven. Al langer denken wetenschappers dat dat ‘beter’ moet kunnen met meer ‘letters’ om andere dan natuurlijke eiwitten te maken en andere processen te verwezenlijken. Dat kan, maar maakt de zaak er niet eenvoudiger op, zo ontdekten onderzoeksters van het MIT en de Yale-universiteit. Lees verder

Genetische code uitbreiden biedt mogelijkheden

De codoncirkel

De codoncirkel te lezen van binnen naar buiten. Aan de rand is te lezen waarvoor het codon codeert. Er zijn drie stopcodons (zwarte stippen) die bij micro-organismen wel kunnen coderen voor een afwijkend aminozuur

Normaal coderen drie opeenvolgende basen (onderdeel van de DNA-bouwstenen), het zogeheten codon, voor een van de twintig aminozuren waaruit de natuurlijke eiwitten bestaan.   Synthetisch biologen zijn al langer om aan die genetische code die in de natuur geldt te knutselen. Met een codon van vier basen kun je een cel andere eiwitten laten aanmaken die ons, is de mens,  misschien van dienst kunnen zijn als geneesmiddelen e.d. Lees verder

Een E. coli met een geheel synthetisch genoom

Bacterie met synthetisch DNA

Bacterie, model E. coli, met synthetisch DNA (afb: univ. van Cambridge)

Het is natuurlijk al eerder gebeurd dat bacteriële genomen in het lab zijn ‘opgebouwd’ en niet in/door het beestje zelf, maar de New York Times (of althans scribent Carl Zimmer) denkt dat wat onderzoekers van de universiteit van Cambridge hebben klaargespeeld een (nieuwe) mijlpaal is in de ontwikkeling van de synthetische biologie (na mijlpalen als de herprogrammering van rijpe cellen tot stamcellen en de CRISPR-methode). Het synthetisch opgebouwde genoom van de Escherichia coli-bacterie is vier keer langer en veel complexer dan van een natuurlijke E. coli..
De bacteriën met het synthetische genoom leven, maar hebben een vreemde vorm en reproduceren erg langzaam (dat zal wel daar dat ongewoon lange genoom komen, denk ik dan; as). Dit onderzoek zou kunnen leiden tot, bijvoorbeeld, medicijnproducerende bacteriën, maar zou ook licht kunnen werpen op de ontwikkeling van de genetische code in de loop van de geschiedenis van het leven. Volgens synthetisch bioloog Tom Ellis van het Imperial College in Londen, die niks met het onderzoek te maken had, is dit inderdaad een mijlpaal. “Niemand heeft dit eerder gedaan als je praat over grootte en aantal veranderingen.”
Negen jaar geleden bouwden onderzoekers een synthetisch genoom dat eenmiljoen baseparen (DNA-letters) lang was. Het nieuwe genoom is vier keer zo lang en opgebouwd met behulp van nieuwe technieken onder leiding van Jason Chin.
Drie opeenvolgende DNA-letters (A, C, G, of T) coderen voor een van de twintig verschillende aminozuren waaruit eiwitten zijn opgebouwd. Je kunt met die vier letters 64 tripletten (of codons) maken. Dat betekent dat er verschillende codons zijn voor een bepaald aminozuur.

Een van de vragen die Chin zich stelt is: Vanwaar die overdaad? Dat deed hem besluiten zelf een ‘versimpeld’ genoom te bouwen.
In de natuur coderen zes codons voor het aminozuur serine. In Chins genoom gebruikte hij er maar vier. Er zijn drie zogeheten stopcodons. In het synhtetische genoom worden er maar twee gebruikt. In feite hebben de onderzoekers het E. coli-genoom doorgevlooid met een zoek&vervang-opdracht. We praten dan over 18 000 locaties op het bacterie-DNA.

Binnensmokkelen

Een genoom bouwen is een ding, maar hoe smokkel je dat een bacteriecel binnen? Het genoom was veel te lang om het in een keer in de cel te proppen, dus werd het genoom bij stukjes en beetjes naar binnen geloodst en het oude verwijderd.
De bacterie overleed daar niet aan tot grote opluchting van de onderzoekers. Het beestje bleef leven en werd langer dan de gewone bacterie. Chin wil nog meer codons verwijderen en kijken hoe ver hij kan gaan voor het leven er de brui aan geeft….

Bron: New York Times

Onderzoekers werken aan viruswerende cellen

George Church, de 'aartsvader' van de synthetische biologie

George Church, de ‘aartsvader’ van de synthetische biologie (afb: Harvard)

In 2016 startte het Genoomproject-schrijf (GP-write), met oorspronkelijk nog de H van Human (menselijk) erbij. Dat beoogde het van nul af aan opbouwen van hele (menselijke) genomen. Vooralsnog was dat een beetje al te ambitieus. Ook was er argwaan over mensen die uit het lab zouden komen. Onlangs hebben de oprichters hun ambities ietwat bijgesteld. Op een bijeenkomst in Boston maakten ze bekend om viruswerende cellen te gaan ontwikkelen. Dat zal nog een hele klus worden (als dat al lukt).
Lees verder

Hoe zou het leven er uit zien als er meer mogelijk was?

Floyd Romesberg en synthetisch leven met meer mogelijkheden

Floyd Romesberg (afb: Scrippsinstituut)

Het systeem dat leven heet is karig omgegaan met de mogelijkheden. Onze (genetische) informatie is opgeslagen in een molecuul dat opgebouwd is uit slechts vier verschillende bouwstenen en het aantal aminozuren dat levende systemen gebruiken om eiwitten mee te maken is beperkt tot 20 (of hooguit 22). De vraag is al vaker gesteld: is dat resultaat het maximaal haalbare of het gevolg van een vrij toevallige samenloop? Zou met zes bases (de DNA-bouwstenen) niet meer mogelijk zijn of met meer eiwitten (de ‘werkpaarden; van het leven)? Dan moet je je meteen realiseren dat met meer bases ook meer fouten (mutaties) zullen ontstaan. Bij twee bases is de replicatie van DNA (verdubbeling bij celdeling) nagenoeg foutloos. En wat leveren die extra aminozuren aan extra’s op? Is wat we nu kennen als leven niet welhaast perfect? Niet meer aan knoeien, dus? Vooralsnog wordt er vooral veel gespeculeerd. Lees verder

Nieuwe taal voor genetische code op komst

Gehercodeerd bacterie-DNA

5% van het bacteriegenoom is ontdaan van twee ‘overbodige’ codons (afb: Wyss-instituut)

Drie DNA-bases, een triplet, coderen voor een van de twintig aminozuren waaruit een eiwit bestaat. Er zijn vier DNA-bases: C, G, T en A. Dat betekent dat je 64 verschillende tripletten hebt. Dat is te veel. Een groep onderzoekers van, onder meer, het Amerikaanse Wyss-instituut hebben de code van 5% het genoom van een Salmonella-bacerie zo veranderd, dat er twee ‘overbodige’ tripletten uit 5% van het DNA werden gehaald, werden ‘vrijgemaakt’, voor andere aminozuren. Bovendien zou die nieuwe genetische ’taal’ er voor zorgen dat de nieuwe levensvorm zich niet mengt met het natuurlijke leven, is het idee.  Nu de rest nog en hopen dat het beestje dan nog in leven blijft. Lees verder

Genoom bacterie drastisch herschikt tot 57-codon E. coli

Een tekening van een 57-codon E. coli

Zo kan zo’n gereprogrammeerde Escherichia coli er uit zien (afb: Chris Bickel)

Kijk, in principe is het allemaal niet zo geweldig lastig. Je pakt een bacteriegenoom, dat veel simpeler is dan van eukaryote cellen zoals die van mensen, en je knipt en plakt er op los. Ik neem aan dat de onderzoekers rond George Church bij het verbouwen van DNA van een Escherichia coli-bacterie met meer overleg te werk zijn gegaan, want het volledige nieuwe beestje is immuun voor virussen en kan coderen voor vier niet-natuurlijke eiwitten.
Dat beestje, 57-codon E. coli de farmaceutische en andere industrieën miljarden besparen, heet het, maar gaat toch meer over de greep die de mens inmiddels heeft gekregen op het genoom. De nieuwe, veilige bacterie zou voor allerlei industriële doeleinden kunnen worden gebruikt en ook eiwitten kunnen produceren die in de natuur niet bestaan. Dit is pas het begin. Wanneer is de mens aan de beurt? Lees verder

Codering van eiwitten minder strikt dan gedacht

De codoncirkel

De codoncirkel, te lezen van binnen naar buiten. Aan de rand is te zie voor welk aminozuur het codon codeert. Er zijn drie stopcodons (zwarte stippen) die bij micro-organismen wel kunnen coderen voor een afwijkend aminozuur

Eiwitten bestaan uit een aaneenschakeling van (maximaal) twintig verschillende eiwitten. Elk aminozuur wordt gecodeerd door een zogeheten codon, een trits DNA-‘letters’). Dat geeft 64 combinatiemogelijkheden, dus zijn er meer codons voor hetzelfde aminozuur plus nog wat stopcodons, die aangeven dat het aflezen van het boodschapper-RNA in het ribosoom moeten worden gestopt. Sommige van die stopcodons coderen bij micro-organismen echter voor het aminozuur selenocysteïne, niet een van de twintig, vonden onderzoekers in Amerika. Het systeem is flexibeler dan gedacht en wie weet wat de natuur nog meer in petto heeft? Lees verder

DNA bevat nog een code (schijnt het)

John Stamatoyannopoulos

John Stamatoyannopoulos van de universiteit van Washington (foto: UW)

Je blijft je over sommige (misschien wel vele) dingen verbazen. Desoxribonucleïnezuur, beter bekend als DNA, is nu zo’n 60 jaar bekend, maar het lijkt er op dat we nog maar een fractie weten van dit mysterieuze molecuul. Onderzoekers van de universiteit van Washington hebben in het kader van het  Encode-onderzoekprogramma (Encyclopedia of DNA elements) ontdekt dat DNA naast de eiwitcoderende functie nog een tweede code bevat. Die code zou te maken hebben met de expressie (=activiteit) van de genen, zo schrijven ze in het wetenschapsblad Science. Lees verder