Onze biorobot bezorgt overal medicijnen

E. coli-bacteriën

E. coli-bacteriën

Als we medicijnen nodig hebben slikken we die (of wat dan ook) en hopen dat die op de bestemde plek terecht komen om hun heilzame werk te doen. Het grootste deel wat we slikken gaat vaak verloren. Al heel wat jaren wordt er onderzoek gedaan om medicijnen daar in het lichaam af te leveren waar ze nodig zijn. Voor zover ik weet (maar ik weet ook maar weinig) wordt die techniek in de praktijk nog nauwelijks toegepast. Onderzoekers van, onder meer, het Max Planckinstituut rond Metin Sitti hebben uitgaande van genetische verander E. coli-bacteriën mikrongrote ‘rototjes’ gemaakt die overal in ons lichaam medicijnen kunnen bezorgen. Die maken gebruik van de bacteriële ‘zintuigen’ om daar hun weg te vinden, aangestuurd door magnetische of geluidssignalen. Lees verder

Virussen: de onverslaanbare sluipmoordenaars

Hi-virussen op een T-cel

Hi-virussen (paars) op een T-cel

Virussen zijn stukjes RNA of DNA die coderen voor eiwitten met een ‘velletje’ er omheen. RNA-virussen zijn virussen waarvan het erfelijk materiaal uit RNA in plaats van DNA bestaat. Bekende voorbeelden Virussen zijn stukjes erfelijk materiaal met een eiwitmantel eromheen, nauwelijks leven. Toch kunnen ze grote rampen veroorzaken.van RNA-virussen zijn het griep-, ebola- en hepatitis-C-virus. Lees verder

De CRISPR-methode werkt ook als antibioticum

Clostridium difficile

Clostridium difficile is een moeilijke ziekenhuisgast (afb: Science)

De befaamde van bacteriën geleende CRISPR/Cas9-methode knipt en plakt niet alleen nucleotiden, maar blijkt ook te kunnen functioneren als antibioticum. Onderzoekers van de universiteit van Noord-Carolina (VS) schijnen met succes de normaal ongevaarlijke bacterie Clostridium difficile uit de darmflora van muisjes te hebben verwijderd met behulp van de CRISPR-methode.
Lees verder

Een weer nauwkeuriger CRISPR-methode ontwikkeld (?)

CRISPR-Cas9 met gids-RNA en doel-DNA

Het Cas9-complex (blauw) ‘omarmt’ het gids-RNA (geel) en doel-DNA (rood) (afb: Bang Wong)

De ontdekking van het CRISPR-mechanisme in bacteriën, daar fungerend als afweersysteem tegen virussen, heeft het genetisch onderzoek op zijn kop gezet. Wereldwijd gingen onderzoekers er mee aan de slag om DNA-moleculen te veranderen, maar er kwamen steeds meer verhalen dat de CRISPR-methode niet zo nauwkeurig was als aanvankelijk werd aangenomen. De laatste tijd zijn er nogal wat methodes bedacht die die onnauwkeurigheid moesten verminderen en vandaag hebben we er weer een, nu uit Duitsland. Die is gericht op de populaire genschaar Cas9. Lees verder

Hoe bouw je een genoom?

Bacterie met synthetisch DNA

Bacterie, model E. coli, met synthetisch DNA (afb: univ. van Cambridge)

Makkelijk zat, zegt iemand die een beetje is ingevoerd. Je plakt de verschillende nucleotiden (ook wel aangeduid met basen, de bouwsteen van het DNA) aan elkaar en gaat daarmee door tot je je bij het eind bent. Tja, zoiets is het wel, maar makkelijk is het niet. Tot voor niet zo heel lang geleden kwamen bedrijven die stukjes DNA synthetiseren voor onderzoeksdoeleinden niet veel verder dan zo’n duizend nucleotiden. Je kunt wel verder gaan, maar dan wordt het aantal fouten in je syngenoom te groot (vooropgesteld dat je een bepaald genoom wil synthetiseren en niet zo maar wat). Vaak werd voor langere stukken de hulp van bacteriën ingeroepen om die korte stukjes aan elkaar te plakken zo zijn ook de eerste bacteriegenomen ‘gesynthetiseerd’ en die zijn vele malen kleiner dan genomen van zoogdieren. Daar hebben we het over miljarden nucleotiden. Inmiddels lijkt de ontwikkeling zo ver gevorderd dat we een stuk verder komen tot chromosomen of zelfs hele genomen. Nog niet in de orde van miljarden basen, maar wel van een miljoen…
Lees verder

Gentechniek gebruikt op bacteriën om bijen te redden

Varraomijt

Varraomijt (afb: WikiMedia Commons)

Het lijkt wel alsof wij mensen hardnekkig steeds weer dezelfde fout maken. Als we door onze manier van leven (inclusief de door ons bedachte technologie) in de problemen komen, dan kijken we nooit, althans zelden, naar de echte oorzaken (onze manier van leven) maar gaan we rommelen. Dat zie je bij de klimaatcrisis, maar dat zie je ook bij de massale bijensterfte. Zeer waarschijnlijk is de mens daar de oorzaak van, maar wat doen wij, althans onderzoekers van de universiteit van Texas? We prutsen wat aan het genoom van bacteriën om bijen te beschermen tegen allerlei ziekteverwekkers. Lees verder

Een ‘noodstop’ voor CRISPR moet methode veiliger maken

Anti-CRISPR-eiwitten

De werking van anti-CRISPR-eiwitten. Links in een CRISPR-bewerking type I (Cas3) en rechts in CRISPR-bewerking type 2 (Cas9) (afb: Nature)


De CRISPR-methode is in een paar jaar tijd razend populair geworden onder genetici en over de hele wereld zijn onderzoekers aan de slag gegaan met die bacteriële afweer om ‘foute’ stukjes in DNA te repareren en om het genoom te bewerken voor onderzoeksdoeleinden. Vervelend is alleen dat de methode niet zo nauw kijkt en nog wel eens een ander stukje DNA ‘meeneemt’ (ook al wordt dat door sommigen weer tegengesproken of tenminste gerelativeerd). Er zijn methoden om die onbedoelde genoombewerking een halt toe te roepen, maar voorlopig zou de enig echte en veilige ‘noodstop’ voor CRISPR er nog niet te zijn. Nature geeft een overzicht. Binnenkort in dit theater? Lees verder

Weer een methode om invoegen DNA met CRISPR te verbeteren

CRISPR-complex

De structuur van Integrate-CRISPR, waarbij het donkerblauwe deel het cascade-enzym is (Cas), het roze het gids-RNA en het lichtblauwe het enzym transposase waarmee stukjes DNA in het genoom kunnen worden ‘gelast'(afb: Sternberg & Fernández Labs, Columbiauniversiteit)

Heb je net een manier beschreven waarmee het invoegen van stukken DNA in het genoom met de CRISPR-methode aanzienlijk doelmatiger wordt, zie ik een ander berichtje dat ook gericht is op het verbeteren van de methode om DNA in te voegen in het genoom. Tot nu toe wordt bij de CRISPR-methode het invoegen overgelaten aan het DNA-reparatiemechanisme van de cel. Een toevoeging van een extra enzym zou dat invoegen veel minder ‘lukraak ‘maken. Lees verder

Bacteriofaag beschermt zich met een schijnkern (?)

Bacteriofaag

Een bacteriofaag oftewel bacterie-eter

Grofweg is de wereld van levende organisme in tweeën te delen de eukaryoten en de prokaryoten. Eukaryoten zijn organismen met cellen die een celkern hebben, bij prokaryoten dobbert het DNA onbeschermd in de cel rond. Virussen worden door sommige wetenschappers niet tot de levende wereld gerekend. Nu blijken er bacteriofagen te zijn, virussen die het gemunt hebben op bacteriën, die een soort beschermingsschil rond hun DNA hebben die dat erfgoed moet beschermen tegen destructieve CRISPR-enzymen van bacteriën. Je zou dat kunnen  zien als een tussenvorm (of overgangsfase) van prokaryoten en eukaryoten. Zijn virussen dan toch ‘levendiger’ dan sommige wetenschappers denken? Overigens lijkt het er sterk op dat de verklaring van de onderzoekers, op zijn zachtst gezegd, hiaten vertoont. Lees verder

Bacteriofagen gentisch aangepast om als antiobiotica te fungeren

Bacteriofagen als antibiotica

Bacterioofagen aangepast voor de antibiotische arbeid en andere doeleinden (afb: Kilcher/ETHZ)

Met behulp van synthetische biologie zijn bacteriofagen (bacterie-‘etende’ virussen) door onderzoekers van het ETH in Zürich zo aangepast dat ze geschikt zouden zijn geworden voor de bestrijding van bacterie-infecties, bij wijze van antibiotica dus. Deze ontwikkeling is in gang gezet nu steeds meer bacteriën voor steeds meer antibiotica ongevoelig zijn geworden. Lees verder