Genetische code uitbreiden biedt mogelijkheden

De codoncirkel

De codoncirkel te lezen van binnen naar buiten. Aan de rand is te lezen waarvoor het codon codeert. Er zijn drie stopcodons (zwarte stippen) die bij micro-organismen wel kunnen coderen voor een afwijkend aminozuur

Normaal coderen drie opeenvolgende basen (onderdeel van de DNA-bouwstenen), het zogeheten codon, voor een van de twintig aminozuren waaruit de natuurlijke eiwitten bestaan.   Synthetisch biologen zijn al langer om aan die genetische code die in de natuur geldt te knutselen. Met een codon van vier basen kun je een cel andere eiwitten laten aanmaken die ons, is de mens,  misschien van dienst kunnen zijn als geneesmiddelen e.d. Lees verder

We kunnen nu eiwitinhoud van elke cel analyseren

Massaspectrometer

Een massaspectrometer voor de bepaling van eiwitten in een cel (afb: Northeastern University)

De eiwitinhoud van een cel vertelt veel over de functies van die cel en wat er eventueel mee mis zou zijn. Het lijkt er op dat die ’tak van sport’ steeds belangrijker wordt in de onderzoek maar ook in het klinisch (praktisch) gebruik. Het vakgebied ontwikkelt zci razendsnel.
Lees verder

Wat weten we eigenlijk van het communicatiesysteem tussen cellen?

Michael Elowitz

Michael Elowitz (afb: quantamagazine.org)

Cellen communiceren met elkaar. Die communicatie is wezenlijk voor het overleven van een organisme maar hoe dat precies gebeurt is nog verre van duidelijk. Het lijkt in ieder geval niet op de simpele manier waarop elektronische schakelingen werken. De manier is aanzienlijk ingewikkelder. Het antwoord op de bovenstaande vraag luid dan ook: weinig (veel te weinig). Eiwitten ‘doen het’ met veel meer andere eiwitten dan tot nu toe voor mogelijk is gehouden. Ze zijn nogal ‘overspelig’ Lees verder

Bieden extremofielen een kans op een langer leven?

Ribosoom van een konijn

Het ribosoom van een konijnencel (afb: Cell Metabolism)

Extremofielen zijn micro-organismen die onder zeer extreme omstandigheden nog kunnen leven zoals bij temperaturen boven de 100°C. Dat maakt ze gewilde onderzoeks-objecten, maar het ziet er naar uit dat ze nog in een ander opzicht bijzonder zijn. Door een genetische verandering zou de eiwitaanmaak bijna volmaakt zijn. Die omstandigheid (mutatie) betekent voor hogere leefvormen  zoals gisten, vliegen en wormen dat ze langer kunnen leven, zo ontdekten onderzoeksters. “Die ontdekking vergroot onze kennis van wat belangrijk is voor een langer leven”, zegt biologe Vera Gorbunova van de universiteit van Rochester die niet bij het onderzoek was betrokken. Wellicht zou dit voor mensen een nieuwe route naar het ‘eeuwige leven’ kunnen zijn. Lees verder

CRISPR-methode is niet enige genoombewerker; verre van

Cas9

Cas9 is nogal ‘omvengrijk’ (afb: WkiMedia Commons)

In een zoektocht naar ‘voorlopers’ van CRISPR-enzymen bij micro-organismen zijn meer dan eenmiljoen mogelijke genoombewerkende enzymen gevonden. Nu maar eens zien wat die allemaal kunnen…
Lees verder

De ’troep’ van DNA is niet gewoon maar rotzooi

DNAHet DNA-molecuul is, uitgerekt, zo’n 2 m lang, voor een molecuul gigantisch. Slechts rond 2% van dat immense molecuul codeert voor eiwitten. De rest werd ooit beschouwd als ’troep’ (in het Engels ‘junk’). Van dat idee zijn de wetenschappers onderhand wel af, want zeker een deel van die 98% is wezenlijk voor het leven. Langzamerhand krijgen genomici steeds meer zicht op wat de troep voorstelt. Dat geeft een hoop discussie… Lees verder

Moeten bacteriën ‘spieren’ kweken voor textielvezels?

Titinestructuur

Zo ziet titine er niet bijzonder indrukwekkend uit (afb: WikiMedia Commons)

Textielvezels als wol en katoen verslijten op den duur. Daar valt niks aan te doen of toch wel? Je kunt polymere vezels gebruiken, maar die hebben zo hun (milieu)problemen. Onderzoekers bedachten dat je bacteriën genetisch zo zou kunnen manipuleren dat ze spierweefsel aanmaken. Of eigenlijk is het het eiwitpolymeer titine. Dat weefsel zou textiele stoffen zo kunnen verbeteren dat het trager slijt. Ook zou je daarmee kogelwerende vesten kunnen maken. Een bezopen idee? Lees verder

Nieuwe organellen kunnen ‘spannende’ eiwitten aanmaken

Eiwitproductie

Via boodschapper-RNA worden stukjes DNA in het ribosoom omgezet in eiwitten (afb.: vib.be)

Onderzoekers van, onder meer, de Johannes Gutenberg-universiteit in Mainz hebben heel platte ‘cellichaampjes’ gemaakt die nieuwe functies aan een cel kunnen toevoegen, door, onder meer, speciale eiwitten aan te maken. In wetenschappelijke termen heet dat het scheiden van de translatie (aanmaak van eiwitten) in eukaryote cellen. Lees verder

PEG10 zorgt voor veilige en gerichte afgifte RNA een cellen

Eiwitproductie

Via boodschapper-RNA worden stukjes DNA in het ribosoom omgezet in eiwitten (afb.: vib.be)

De boodschapper-RNA-therapie heeft de volle aandacht gekregen in de race om coronavaccins te ontwikkelen, maar dat betekent niet dat b-RNA-techniek een gelopen race is. Om dat grote RNA-molecuul in alle cellen te krijgen is nog niet eenvoudig aangezien het lichaam gewend is rondzwervend afval op te ruimen. In het geval van RNA zorgen daar de nucleases voor. Dus moet RNA verpakt worden om ‘onzichtbaar’ te worden. Onderzoekers hebben nu een (mensen)eiwit gebruikt om er voor te zorgen dat het b-RNA onbeschadigd in cellen terechtkomt en alleen in vooraf bepaalde cellen. Lees verder

Taaislijmziekte genezen met CRISPR-methode (in petrischaaltje)

Priembewerking DNA

De priembewerking van DNA in ‘vogelvlucht’. Er zou, onder meer, een extra gids-RNA zijn gebruikt om ervoor te zorgen dat alleen het beoogde stukje DNA wordt vervangen  (afb: Hubrechtsinstituut)

Onderzoekers rond Hans Clevers van het Hubrechtinstituut in Utrecht hebben met behulp van de CRISPR-methode de taalslijmziekte (een, recessief, erfelijke ziekte) genezen door de foute mutaties in het DNA te vervangen door een gezonde code. Het ging hier overigens om een proef in petrischaaltjes en niet met echte patiënten, maar het lijkt een veelbelovende ontwikkelingen voor lijders aan die aandoening. Lees verder