RNA-reparatie van mossen werkt ook in mensencellen

RNA-herschrijvers

RNA-herschrijvers PPR56 en PPR65 veranderen de basen van nucleotiden van RNA’s in de mitochondriën in plantencellen van cystidine (C) in uracil (U). Ze werken ook in mensencellen. De herschrijvers zouden kunnen worden aangepast voor ‘eigen gebruik’ (afb: Schallenberg-Rüdiger et.al.)

Een reparatie-mechanisme dat mossen gebruiken om fouten in DNA te corrigeren via een omweg (dat repareert namelijk RNA), blijkt ook in cellen van mensen te werken, ontdekten onderzoeksters van de universiteit Bonn. Dat doet dat overigens volgens de eigen regels en die regels zijn nog niet bekend. Lees verder

Genoombewerking richt zich steeds vaker op landbouwgewassen

Procédé priembewerking

In de priembewerking worden stukjes DNA streng voor streng vervangen (afb: Nature)

Ook in dit blog ligt de nadruk bij genoom-bewerking vooral op geneeskundige toepassingen, maar dat betekent niet dat die op andere terreinen niet belangrijk is of kan worden. Als we het wetenschapsblad Nature mogen geloven (en waarom niet?) grijpen steeds meer landbouwbiologen naar die methoden om landbouwgewassen aan te passen, maar dat blijkt niet zonder problemen. Er zijn nog heel wat hobbels te nemen om landbouwgewassen genetisch zo te veranderen dat ze de honger en de ondervoeding in de wereld tot het verleden verbannen (of gaat het daar niet om?; as). Lees verder

Twaalf genen met CRISPRCas9 in een keer uitgeschakeld

CRISPR-complex

De structuur van het CRISPR-complex, waarbij het donkerblauwe deel het cascade-enzym is (Cas), het roze het gids-RNA en het lichtblauwe het enzym transposase waarmee stukjes DNA in het genoom kunnen worden ‘gelast'(afb: Sternberg & Fernández Labs, Columbiauniversiteit)

Onderzoekers van de Maarten Luther-universiteit in Halle en het Leibnitzinstituut voor plantbiochemie hebben een zelf ontwikkelde aangepaste vorm van de ‘genschaar’ CRISPR/Cas9 gebruikt om bij planten in een keer tot twaalf genen tegelijkertijd uit te schakelen. De genoombewerkingstechniek maakt het makkelijker op de wisselwerking tussen diverse genen te onderzoeken. Lees verder

Hoe sturen plantencellen hun epigenoom?

Zandraket

Zandraket (Arabidopsis thaliana)

Wat er met ons lichaam gebeurt staat allemaal opgetekend in het genoom, maar er zijn zo’n tweehonderd verschillende cellen in ons lichaam die ook nog eens reageren op hun omgeving. Dan komt het epigenoom om de hoek kijken, het systeem dat de activiteit van de genen bepaalt. Onderzoekers in Japan zijn bij planten eens gaan kijken hou dat epigenoom in elkaar steekt. Het lijkt er op dat dat epigenoom weer ingewikkelder in elkaar steekt dan gedacht, waarbij genen het zwijgen wordt opgelegd en springende genen aan banden worden gelegd, maar dat in een ingewikkeld samenspel met stress- en ontwikkelingsgenen. Lees verder

Planten blijven knutselen aan genetische afwijkingen

RNA-berwerkers van planten doen het ook in bacteriën

Van C naar U (en terug?). Knoop staat links Mareike Scahllenberg-Rüdinger rechts (afb: univ van Bonn)

De natuur zit eigenaardig in elkaar. Aan de ene kant gebruikt ze maar weinig van wat de aarde aan variëteit biedt (vier DNA-bouwstenen, twintig aminozuren), maar aan de andere kant heeft de natuur een systeem ‘gebouwd’ dat afgrijselijk ingewikkeld is en waarbij er veel geregeld en gestuurd moet worden en, dus, veel fout kan gaan. Planten schijnen er helemaal een warboel van gemaakt te hebben. Daar deugt een hoop niet aan de genetische informatie die een plant opslaat en die moet constant gerepareerd worden door ‘bewerkers’.  Onderzoekers hebben dat ‘maffe’ reparatiesysteem nu in een bacterie overgezet en ze zagen dat die ‘bewerkers’ ook daar C-basen in U-basen omzetten (twee van de vier ‘letters’ van RNA). Lees verder

CRISPR-Cas9-methode zou geen genetische manipulatie zijn

Aradopsis (zandraket?)

De ‘steen des aanstoots’: een plant uit het Aradopsis-geslacht waartoe onder meer de zandraket behoort (foto: Stefan Jansson)

We hebben het hier vaker gehad over de van bacteriën geleende CRISPR-Cas9-methode om heel precies DNA te bewerken. Dat lijkt me genetische verandering of, zo je wilt, manipulatie, maar nu heeft de Zweedse Landbouwraad anders beslist: met CRISPR-Cas9-methode bewerkte organismen vallen niet per se onder de genetisch veranderde organismen. Dat is niet onbelangrijk, omdat de EU nogal terughoudend is bij het toelaten van genetisch gemanipuleerde planten. Mij lijkt het een strijd tussen haarklovende rechtsgeleerden. Het is duidelijk dat hier op een niet natuurlijke manier wordt gesleuteld aan het genoom, toch? De Landbouwraad boog zich over de zaak naar aanleiding van vragen van onderzoekers van de universiteiten Umeå en Uppsala. Lees verder