Alzheimerveroorzaker (?) ApoE4 omgezet in het ‘goede’ ApoE3

ApoE en Alzheimer

De structuur van ApoE (afb: Wiki Commons)

Volgens onderzoekers van de universiteit van Tel Aviv is het ApoE-gen een veelbelovend doelwit voor de behandeling van Alzheimer. Dat gen zou kunnen muteren van het ‘goede’ ApoE3 in het ‘foute’ ApoE4. De Israëlische onderzoekers zouden een manier hebben gevonden om met behulp van de ‘enzymmachine’ ABCA1 ApoE4 weer om te zetten in ApoE3. De ApoE-mutatie zou een relatie hebben met de ziekte van Alzheimer. Lees verder

Viruseiwit voorkomt dat gastheercel alarm slaat

Een adenovirus

Een adenovirus heeft wel iets weg van een kunstmaantje (afb: Wiki Commons)

Virussen hebben diverse technieken om te voorkomen dat de gastheercel die het is binnengedrongen alarm slaat en het afweersysteem aan de slag gaat. Onderzoekers van het kinderziekenhuis in Philadelphia en van de universiteit van Pennsylvania (beide in de VS) hebben een nog niet eerder ontdekt mechanisme waargenomen waarmee virussen voorkomen dat het afweersysteem in actie komt. Het viruseiwit VII voorkomt dat een signaalstof in de celkern zijn alarmerende werk kan doen. Lees verder

Antilichaam knokkelkoorts blokkeert ook zikavirus

virusomhulseleiwit geblokkeerd door antilichaam

Het eiwit van het zikavirusomhulsel (blauw, rood en geel) dat geblokkeerd wordt door een antilichaam (groen en wit) (afb: Pasteurinstituut)

Het lijkt er op dat een groep onderzoekers van, onder meer, het Pasteurinstituut (F) en CNRS (F) antilichamen hebben gevonden die zowel het knokkelkoorts– als het zikavirus kunnen uitschakelen. Dat komt doordat de bindingsplaats op beide virusomhulsels voor deze immunoglobulines identiek is. Deze ontdekking zou de basis kunnen vormen voor een universeel vaccin tegen beide virussen. Lees verder

Antikankereiwit TP53 vindt zelf juiste plek op DNA

Het eiwit TP53 (TP staat voor tumorproteïne) schijnt zich op een specifieke plaats met het DNA-molecuul te binden en daardoor genen te activeren die zorgen voor het herstel van schade aan de cellen. Daarmee zou kanker worden voorkomen, stellen onderzoekers van de Katholieke universiteit van Leuven, die hebben uitgevogeld hoe dat proces verloopt. Het blijkt dat die eiwitten geheel op eigen kracht de juiste plek op dat immense DNA-molecuul kunnen vinden. Lees verder

Genen te activeren met synthetische Cas9-eiwitten

George Church, de 'aartsvader' van de synthetische biologie

George Church, de ‘aartsvader’ van de synthetische biologie (afb: Harvard)

CRISPR/Cas9 is niet alleen een van bacteriën geleend systeem om genen te vervangen, maar ook om genen te activeren, waardoor de bijbehorende eiwitten (meer) worden geproduceerd. Hoe je met welke synthetische Cas9-eiwitten welke genen activeert is nu eens in een artikel in Nature bij elkaar gezet door synbiocoryfee George Church van de Harvard-universiteit en de zijnen: een nieuw hoofdstuk in het handboek in genetisch knutselen. Lees verder

Genexpressie resultaat voortdurende dialoog in cel

Ccr4-Not regelt genexpressie en nog veel meer

Het Ccr4-Not-complex regelt veel zaken van levensbelang voor de cel (afb: John Reese/PennState)

Het kan natuurlijk ook niet anders. Op de een of andere manier moet de informatie dat er een tekort aan een bepaald eiwit inde cel is worden doorgegeven aan de celkern, waar het desbetreffende gen wordt geactiveerd. Zwitserse en Duitse onderzoekers hebben nu uitgevogeld dat er een voortdurende discours is tussen de kern met het DNA-molecuul en het cytoplasma ( de rest van de cel). In die dialoog speelt het eiwitcomplex  Ccr4-Not een wezenlijke rol. Lees verder

Translatie in cel direct bekeken

De geboorte van eiwitten in beeld gebracht

Een plaatje uit het filmpje van Stasevich. Rood is RNA, blauw en groen eiwitten. De grote groene vlek op de achtergrond is de kern (afb: univv. Colorado)

Onderzoekers van de universiteit van Colorado hebben de translatie in een cel via een bijzondere microscoop rechtstreeks kunnen volgen. Translatie is het proces in de cel waarbij het boodschapper-RNA in het ribosoom wordt afgelezen en waaruit uiteindelijk eiwitten ontstaan. Cruciaal voor het resultaat was de microscoop die gebruikt werd.  Die werd gebouwd door onderzoeksassistent Tatsuya Morisaki en bestaat uit twee uiterst gevoelige camera’s en heeft geen bewegende delen.  Ook Robert Singer van het Albert Einsteincollege voor geneeskunde heeft, met andere middelen een soortgelijk resultaat bereikt.
Lees verder

Grenzen aan de evolutie van gencode

transfer-RNA-molecuul begeleidt aflezing-boodschapper-RNA

Varieerbaarheid in transfer-RNA-moleculen bepaalt de grens aan genetische codes (afb: Pablo Dans, IRB)

De evolutie staat nooit stil, maar er zijn grenzen. Spaanse onderzoekers denken te weten dat de genetische code zich ontwikkelde tot een maximum van twintig aminozuren, die het leven nu gebruikt om eiwitten op te bouwen. Dat zou volgens hen liggen aan het transfer-RNA, dat een rol speelt bij de vorming van eiwitten via het aflezen van boodschapper-RNA in het ribosoom (de zogeheten translatie). Die ‘maximalisatie’ van de genetische code zou zo’n 3 miljard jaar geleden hebben plaatsgevonden voor de gescheiden ontwikkeling van bacteriën, eukaryoten (cellen met een kern) en archaea (‘oerbacteriën’), aangezien alle levende organismen dezelfde genetische code gebruiken om eiwitten te produceren. Lees verder

Codering van eiwitten minder strikt dan gedacht

De codoncirkel

De codoncirkel, te lezen van binnen naar buiten. Aan de rand is te zie voor welk aminozuur het codon codeert. Er zijn drie stopcodons (zwarte stippen) die bij micro-organismen wel kunnen coderen voor een afwijkend aminozuur

Eiwitten bestaan uit een aaneenschakeling van (maximaal) twintig verschillende eiwitten. Elk aminozuur wordt gecodeerd door een zogeheten codon, een trits DNA-‘letters’). Dat geeft 64 combinatiemogelijkheden, dus zijn er meer codons voor hetzelfde aminozuur plus nog wat stopcodons, die aangeven dat het aflezen van het boodschapper-RNA in het ribosoom moeten worden gestopt. Sommige van die stopcodons coderen bij micro-organismen echter voor het aminozuur selenocysteïne, niet een van de twintig, vonden onderzoekers in Amerika. Het systeem is flexibeler dan gedacht en wie weet wat de natuur nog meer in petto heeft? Lees verder

Alzheimercapsules voorkomen plaques bij muizen

De capsule met antilichamenproducerende cellen weer Alzheimer

De capsule met antilichamenproducerende cellen (afb: Patrick Aebischer (EPFL)

Onderzoekers van de polytechnische hogeschool in Lausanne (EPFL/Zwi) zouden hebben bewezen dat muizen geen Alzheimer kregen als ze een capsule onder de huid kregen geïmplanteerd met genetisch veranderde cellen die bepaalde antilichamen produceerden. Of de Alzheimercapsule praktisch is, is nog maar de vraag, maar opzienbarend is het wel.  Lees verder