
De aanwezigheid van een antigeen stimuleert de omzetting van T-cellen naar “cytotoxische”- (CD8+)-T-cellen of “helper”- (CD4+)-cellen (afb: WikiMedia Commons)

De aanwezigheid van een antigeen stimuleert de omzetting van T-cellen naar “cytotoxische”- (CD8+)-T-cellen of “helper”- (CD4+)-cellen (afb: WikiMedia Commons)

Structuur van Cas12a3 (afb: Biao Yuan / HZI)
Sinds ‘we’ CRISPR hebben geleend van bacteriën zijn wetenschappers over de hele wereld driftig bezig om dit instrument om genomen (mv van genoom) ook daadwerkelijk toe te passen en soms zijn die toepassingen ook al goedgekeurd voor klinisch gebruik. Onderzoekers hebben die CRISPR-gereedschapskist van de bacteriën nog maar mondjesmaat ingezet en nu komt er zo langzamerhand meer CRISPR-vormen boven water die elk zo weer hun eigen toepassingsgebieden hebben.
‘We’ zijn nog maar net begonnen de inhoud van die kist te inventariseren (stel ik=as heel brutaal). Onderzoekers van het Helmholtz-instituut voor RNA-gebaseerd besmettingsonderzoek (HIRI) in Würzburg hebben een compleet ander CRISPR-verdedigingsstrategie ontdekt: in tegenstelling tot bekende de bekende Cas-nucleasen (‘genscharen’) splitst Cas12a3 specifiek transfer-ribonucleïnezuur (tRNA), dat essentieel is voor de eiwitsynthese, om besmette cellen uit te schakelen. Lees verder

Molecuulstructuur van MCL1 (afb: WikiMedia Commons)

De promotor is een deel van een gen dat in gemethyleerde vorm het gen inactief maakt (en viceversa) (afb: Merlin Crossley et al./Nature Comunications)

Basisstructuur van antilichamen. N is het amino-uiteinde en C is het koolstofuiteinde van de keten. Rood zijn de disulfidebruggen (afb: WikiMedia Commons)
Ons DNA verschilt van persoon tot persoon op duizenden plaatsen. Dat betekent met (ongeveer) hetzelfde gen (ietwat) afwijkende eiwitten produceren en dat kan in sommige gevallen leiden dat bepaalde op antilichaamtherapieën niet effectief zijn. Die behandelingen worden vaak gebruikt voor veel ziektes, maar die slaan daardoor niet bij iedereen ook aan. Dat percentage ligt rond de 1%, maar het gaat vaak om dure behandelingen zoals de CAR-T-celtherapie. Lees verder

In de zwezerik (thymus) leren T-cellen onderscheid te maken tussen eigen en niet-eigen. Op de foto een zwezerik van een mens (afb: WikiMedia Commons)
Gaandeweg het stijgen der jaren werken allerlei systemen in ons lijf minder goed. Zo gaat ons, op zich prachtige, afweersysteem achteruit. Onderzoekers van het Duitse kanker-onderzoekscen-trum DKFZ, het HI-STEM-stam-celinstituut en het Broadinstituut zouden er in geslaagd zijn met boodschapper-RNA een verou-derd afweersysteem van muisjes nieuw leven in te blazen. Daardoor herstelt de aanmaak van nieuwe afweercellen, waardoor oudere dieren (we hebben het dan over beestjes van een jaar of twee) een beste afweerreactie kunnen ontwikkelen en tumoren effectief kunnen bestrijden. Tsjonge. Lees verder

Het transportsysteem wordt ‘verleid’ om niet natuurlijke aminozuren in de E- coli-cel binnen te laten, waar die, na wat manipulatie, ook daadwerkelijke niet-natuurlijke eiwitten gaat aanmaken (afb: Kathrin Lang et al./Nature)
Het (ook ons) leven gebruikt maar twintig aminozuren om de werkpaarden van dat leven te bouwen: de eiwitten. Onderzoeksters van ETH Zürich hebben nu een bacterieel transportsysteem zo aangepast dat het efficiënt grote hoeveelheden onnatuurlijke aminozuren, vermomd als een Trojaans paard, in cellen kan aanmaken. Daardoor zouden eiwitten kunnen worden gemaakt met meer, andere functies dan de natuurlijke is de gedachte. Of dat echt zo is moet nog wel worden aangetoond. Lees verder

Er zijn verschillende DNA-reparatiesystemen. Hier is uracil-DNA-glycosylase (groen) aan het werk. Blauw en rood zijn de twee DNA-strengen . Geel is het uracilresidu (afb: WikiMedia Commons)
Onderzoekers van Cedars-Sinai hebben een nieuw experimenteel medicijn ontwikkeld, TY1 gedoopt, dat helpt beschadigd DNA en weefsel te herstellen. De was het resultaat van de bestudering moleculaire berichten die door hartcellen worden afgegeven en die van nature de genezing na een verwonding ondersteunen. Door de krachtigste van deze berichten te isoleren en te reproduceren, konden ze een synthetisch RNA-molecuul ontwikkelen dat het DNA-herstelsysteem van het lichaam stimuleert, littekenvorming vermindert en het herstel na hartaanvallen en andere ziekten zou kunnen verbeteren. Lees verder

De structuur van RNA-polymerase II (afb: wikiMedia Commons)
Als we op school geweest zijn dan weten we dat ons leven is vastgelegd in een 2 m lang molecuul: DNA. De instructiedelen van DNA (=genen) worden afgelezen en overgebracht op RNA dat op zijn beurt weer wordt afgelezen om eiwitten te vormen, de werkpaarden in wat leven heet. Een belangrijke rol in die dans speelt het enzym RNA-polymerase II (Pol II)
Het is bekend dat Pol II zich langs het gen moet voortbewegen in perfecte harmonie met andere biologische processen. Afwijkingen in de beweging van dit enzym zijn in verband gebracht met kanker en veroudering, maar technische obstakels verhinderden het om precies te bepalen hoe deze belangrijke moleculaire machine zich door het DNA beweegt en wat de pauzes en versnellingen ervan regelt. Een nieuwe studie zou veel van de kennishiaten invullen, aldus de betrokken onderzoekers. Lees verder

Tuncay Baubec (r) en Richard Cardoso da Silva, ontwikkelaars van de DNA-reparatiesensor (afb: UU/Harold van de Kamp)