Genexpressie resultaat voortdurende dialoog in cel

Ccr4-Not regelt genexpressie en nog veel meer

Het Ccr4-Not-complex regelt veel zaken van levensbelang voor de cel (afb: John Reese/PennState)

Het kan natuurlijk ook niet anders. Op de een of andere manier moet de informatie dat er een tekort aan een bepaald eiwit inde cel is worden doorgegeven aan de celkern, waar het desbetreffende gen wordt geactiveerd. Zwitserse en Duitse onderzoekers hebben nu uitgevogeld dat er een voortdurende discours is tussen de kern met het DNA-molecuul en het cytoplasma ( de rest van de cel). In die dialoog speelt het eiwitcomplex  Ccr4-Not een wezenlijke rol. Lees verder

DNA pluripotente stamcellen vouwt verkeerd (?)

De ruimtelijke structuur van DNA (warmtekaarten)

De ‘warmtekaart’ verraadt’ de nabijheid van stukken DNA in de ruimte. Die kaarten zijn de afgelopen jaren steeds nauwkeuriger geworden (eronder ter vergelijking de ontwikkeling in de yv-techniek) (afb: univ.v.Pennsylvania)

Sinds een jaar of tien geleden onderzoekers een manier hebben gevonden om van rijpe cellen weer stamcellen te maken, is de hoop gegroeid dat het medisch arsenaal aanzienlijk kan worden uitgebreid met, onder meer, de synthese van organen. Die wat genoemd wordt pluripotente stamcellen blijken nog wel eens ‘uit de bocht’ te vliegen en zich te ontwikkelen tot kankercellen. Onderzoekers van, onder meer, de universiteit van Pennsylvanië denken dat die ‘misstappen’ te maken kunnen hebben met het vouwpatroon in het DNA. Lees verder

CRISPR/Cas9 ook te gebruiken bij puntmutaties

CRISPR/Cas9-techniek verbeterd

De CRISPR-techniek zou nog niet precies genoeg zijn om mensen te behandelen. (afb: Wiki Commons)

Ik dacht dat de genschaar (CRIPR/Cas9) al akelig nauwkeurig was, maar kennelijk viel er aan dit natuurlijke systeem nog wat te verbeteren. Onderzoekers uit Amerika zouden er in geslaagd zijn nu met de genschaar puntmutaties te corrigeren (mutaties waarbij maar een basepaar is veranderd). Het CRISPR/Cas9-systeem knipt daarbij niet het DNA door, maar wisselt de desbestreffende basen uit. In een eerste proeve van mogelijkheden repareerden de onderzoekers het APOE4-gen om twee baseplaatsen. Dat gen heeft een slechte reputatie, omdat het met de ziekte van Alzheimer wordt geassocieerd. Lees verder

Hi-virus kan CRISPR/Cas9-aanval weerstaan

Hi-virus muteert na CRISPR/Cas9-aanval

Virussen die niet het loodje leggen door de CRISPR/Cas9-aanval veranderen hun DNA via het eigen reparatiemechanisme (NHEJ repair) (afb: Cell Reports)

Het van bacteriën geleende CRISPR/Cas9-systeem (het knippen en plakken van genen) wordt nu veel door onderzoekers gebruikt om DNA te bewerken, maar dat is ooit begonnen als bacteriële afweer tegen virus-en bacteriofaag-aanvallen.  Daar zou dat dan ook voor menselijke gebruik toe kunnen dienen, maar onderzoekers vonden dat het hi-virus een afweer tegen een CRISPR/Ca9-aanval kan opbouwen (pdf-bestand). De onderzoekers denken dat op zijn minst meer delen van het virus-DNA moeten worden aangepakt om dat systeem als virusverdelger (in feite wordt de vermeerdering gestopt) te kunnen gebruiken. Niet alleen bij hiv, overigens, maar daarvoor is nog een lange weg te gaan.
Lees verder

Gist leert ons of mutaties gevaarlijk zijn

Via genoom gistcellen te bepalen of mutaties schadelijk zijn

Zo ongeveer werkt de gistcelproef met gemuteerde menselijke genen: doet de gistcel het wel of niet met de ingepaste gemuteerde menselijke soortgenoot van het gistgen. Blijft de cel drijven of zinkt ie?

Het uitlezen van DNA is simpeler en sneller dan het ooit geweest is, maar dat betekent niet dat we dan ook meteen weten welk risico op welke ziekte we hebben. Onderzoekers hebben nu gistcellen te hulp geroepen om bij sommige genen te achterhalen of mutaties bij mensen schadelijk zijn of niet. De vinding van Fritz Roth van de universiteit van Toronto Canada is in wezen heel simpel. Kijk hoe die mutatie het in het genoom van een gistcel doet, dan weet je of de mutatie schadelijk is of niet. Lees verder

Nieuwe manier om ’troep-DNA’ interpreteren

De wisselwerking tussen versterkers (enhancers) en genen

Zo ongeveer koppelen versterkers (2) aan het te activeren gen (3). Het enzym RNA-polymerase (7) zorgt voor het kopiëren van het gen in boodschapper-RNA (afb: Wiki Commons)

Maar een klein deel van DNA codeert voor eiwitten, de rest is troep (junk) dacht men ooit. Dat blijkt inmiddels niet waar te zijn, maar hoe dat nu wel in elkaar steekt is nog verre van duidelijk. Onderzoekers van de Gladstone-instituten in San Fransisco (VS) hebben een techniek bedacht, TargetFinder gedoopt, om dat zogenaamde ’troep-DNA’ van het menselijke genoom te kunnen interpreteren in de hoop en verwachting dat dat iets oplevert om tot nu toe moeilijke geneesbare ziektes te kunnen behandelen.
Lees verder

DNA programmeren met Cello

DNA programmeren als elektronische schakelingen

Uiteindelijk rolt er uit de computer een DNA-sequentie, die vervolgens gesynthetiseerd en in het DNA van een bacterie wordt ingebracht (afb: beeld Youtubefilmpje ibiology.org)

Het doel van synthetische biologie is synthetisch leven te ontwerpen. Waartoe is hier even niet van belang. Nu is dat vooral en kwestie van proberen (en van je missers leren. Het lijkt er op dat die ‘amateuristische’ aanpak wat zal worden gestroomlijnd. Onderzoekers van, onder meer, het MIT in Cambridge (VS) hebben het programma Cello ontwikkeld waarmee DNA zou zijn te programmeren, een beetje alsof je computerprogramma’s schrijft. “We hebben voor dezelfde aanpak gekozen als bij het ontwerpen van de chip”, zegt MIT-onderzoeker Chris Voigt. “Elke stap in het proces is hetzelfde, maar in plaats van met silicium werk je met DNA.” Lees verder

Codering van eiwitten minder strikt dan gedacht

De codoncirkel

De codoncirkel, te lezen van binnen naar buiten. Aan de rand is te zie voor welk aminozuur het codon codeert. Er zijn drie stopcodons (zwarte stippen) die bij micro-organismen wel kunnen coderen voor een afwijkend aminozuur

Eiwitten bestaan uit een aaneenschakeling van (maximaal) twintig verschillende eiwitten. Elk aminozuur wordt gecodeerd door een zogeheten codon, een trits DNA-‘letters’). Dat geeft 64 combinatiemogelijkheden, dus zijn er meer codons voor hetzelfde aminozuur plus nog wat stopcodons, die aangeven dat het aflezen van het boodschapper-RNA in het ribosoom moeten worden gestopt. Sommige van die stopcodons coderen bij micro-organismen echter voor het aminozuur selenocysteïne, niet een van de twintig, vonden onderzoekers in Amerika. Het systeem is flexibeler dan gedacht en wie weet wat de natuur nog meer in petto heeft? Lees verder

De nieuwe beestjes JCVI-syn3.0 van Craig Venter

De 'nieuwe' JCVI-syn3.0-bacterie

De ‘nieuwe’ JCVI-syn3.0-bacterie

Onderzoekers zijn al heel lang bezig het minimale genoom te achterhalen. Welk DNA-molecuul bevat net genoeg genen om leven mogelijk te maken. Het J. Craig Venter-instituut slaagde er in 2010 in het genoom van de bacterie Mycoplasma mycoides na te bouwen, maar nu zijn onderzoekers van hetzelfde instituut er in geslaagd een bacterie ’te bouwen’, JCVI-syn3.0 gedoopt, met een zelf ontworpen, minimaal genoom met maar 473 genen (de mens heeft er zo’n 20 000). Het is, zo lijkt het, het eerste kunstmatige genoom, even voorbijgaand aan al die genetisch gemanipuleerde, vooral, micro-organismen die de afgelopen jaren in het lab en bij bedrijven zijn ‘ontwikkeld’. Vooralsnog zit dat nieuwe genoom nog in een van een ander organisme geleende cel. Lees verder

RNA uitlezen geeft meer informatie over ziekte

Het uitlezen van RNA

Het uitlezen van RNA

RNA uitlezen zou veel meer informatie over het ‘mankement’ van een patiënt geven dan welke diagnosemethode ook, schrijven onderzoekers van het instituut voor translatiegenomie in Phoenix (VS) in een overzichtsartikel. Zij noemen RNA-uitlezing zelfs de kern van de ‘precisiegeneeskunde’, de op de patiënt afgestemde geneeswijze. Lees verder