Op zoek naar het oermolecuul van het leven

Ontstaan van het leven

Hoe is het leven ontstaan? Spontaan in een oeroceaan, voordat er cellen waren? (afb: Luigi Luisi/Molecular Systems Biology)

Het blijft intrigeren en het probleem is nog steeds niet opgelost (als dat al ooit gebeurt): Hoe is het leven ontstaan? We hebben het daar in dit blog al vaker over gehad. De vraag zou je kunnen ‘versimpelen’ tot: Welk oermolecuul heeft het startsein gegeven voor het fenomeen dat we nu leven noemen. Zelfkopiëring/zelfreplicatie wordt daarbij als belangrijke eigenschap van dat oermolecuul gezien. RNA heeft momenteel de beste papieren en/of de meeste aanhangers. Nu hebben onderzoekers ontdekt dat RNA veel flexibeler is om zichzelf te herkennen dan voorheen gedacht. Dat idee zou het beeld van hoe we denken over de scheikunde achter het begin van leven wel eens kunnen veranderen, maar of we daar wat mee opschieten?. Lees verder

Genetische ‘architecten’ ontrafelen kronkels DNA

Inactief X-chromosoom met superlussen

Het inactieve X-chromosoom bevat reuzenlussen die verdwijnen als de DNA-sequentie DXZ4 wordt verwijderd (afb: Qanta Magazine)

Het menselijk DNA-molecuul is lang, uitgerekt bijna 2 m. Dat immense molecuul moet in een kern gepropt worden van enkele micrometers (duizendste mm). Hoe werkt dat en vooral hoe moet dat opgepropte molecuul worden afgelezen om RNA-kopieën te kunnen maken om eiwitten te produceren? Onderzoekers hebben het onvolprezen bacteriewerktuig CRISPR/Cas9 gebruikt om er achter te komen hoe het DNA-molecuul ligt opgekruld in de kern. Lees verder

CRISPR/Cas9 ook te gebruiken bij puntmutaties

CRISPR/Cas9-techniek verbeterd

De CRISPR-techniek zou nog niet precies genoeg zijn om mensen te behandelen. (afb: Wiki Commons)

Ik dacht dat de genschaar (CRIPR/Cas9) al akelig nauwkeurig was, maar kennelijk viel er aan dit natuurlijke systeem nog wat te verbeteren. Onderzoekers uit Amerika zouden er in geslaagd zijn nu met de genschaar puntmutaties te corrigeren (mutaties waarbij maar een basepaar is veranderd). Het CRISPR/Cas9-systeem knipt daarbij niet het DNA door, maar wisselt de desbestreffende basen uit. In een eerste proeve van mogelijkheden repareerden de onderzoekers het APOE4-gen om twee baseplaatsen. Dat gen heeft een slechte reputatie, omdat het met de ziekte van Alzheimer wordt geassocieerd. Lees verder