Normaal is DNA opgebouwd uit slechts vier bouwstenen (nucleotiden, ook wel DNA-letters genoemd: A, C, G en T). Nu hebben onderzoekers van het Amerikaanse Scripps-instituut aan een bacteriëel DNA-molecuul twee synthetische nucleotiden toegevoegd. Dat schijnt al eerder gebeurd te zijn, maar nu lijkt dit deels kunstmatige DNA ‘levensvatbaar’ te zijn: E. coli-bacteriën met dit vreemde DNA bleken, na enige aanpassingen, normaal te groeien en te delen. Ook de ‘nakomelingen’ van de bacterie met twee foute nucleotiden zouden die vreemdgangers mee krijgen. Moeten we ons zorgen maken? Daar praten de onderzoekers niet over. Lees verder
Categorie archieven: DNA
Met CRISPR processen in de celontwikkeling volgen
Onderzoekers van het Engelse Sanger-instituut en van de universiteit van Cambridge hebben een naar eigen zeggen verbeterde en efficiëntere vorm van de CRISPR-techniek ontwikkeld. Ze hebben de nieuwe ‘versie’ sOPTIKO of sOPTIKD gedoopt. Met dat systeem zou je processen in de celontwikkeling kunnen volgen. Dat helpt om uit te pluizen hoe gezonde cellen functioneren, maar ook cellen kunnen ontaarden. Lees verder
Synthetisch DNA-vaccin beschermt tegen zika-besmetting
Een vaccin van synthetisch DNA zou muizen en apen tegen het zika-virus beschermen. Inenting daarmee resulteerde in een krachtige reactie van het afweersysteem van de proefdieren. Alle proefdieren doorstonden met goed gevolg een virusinfectie. Er is vooralsnog geen medicijn tegen het zika-virus. Lees verder
Genetische ‘architecten’ ontrafelen kronkels DNA
Het menselijk DNA-molecuul is lang, uitgerekt bijna 2 m. Dat immense molecuul moet in een kern gepropt worden van enkele micrometers (duizendste mm). Hoe werkt dat en vooral hoe moet dat opgepropte molecuul worden afgelezen om RNA-kopieën te kunnen maken om eiwitten te produceren? Onderzoekers hebben het onvolprezen bacteriewerktuig CRISPR/Cas9 gebruikt om er achter te komen hoe het DNA-molecuul ligt opgekruld in de kern. Lees verder
Kind van drie ouders geboren
Naar nu bekend is gemaakt is op 6 april in Mexico een zuigeling geboren met DNA van drie verschillende ouders. Het DNA in de kern is afkomstig, zoals gewoonlijk van de vader en de moeder, maar het mitochondriale DNA is afkomstig van een derde ‘donor’. In sommige gevallen zijn mutaties in het mitochondriale DNA, dat overgedragen wordt van moeder op kind, verantwoordelijk voor ernstige ziektes. Vandaar dat is gekozen voor een drieouderkind met gezond motochondriaal DNA van een derde. De methode is niet onomstreden. Het kind is gezond. Lees verder
Je kan je genetische voorlopers aardig berekenen
Als je wilt weten van welke genetische voorlopers je of een muis, hagedis afkomstig bent/is, dan zou je dat met behulp van een computer en heel wat aannames miljoenen jaren kunnen terugrekenen. Dat heet voorouderlijke sequentie- of DNA-reconstructie. De vraag is natuurlijk of dat een leuk tijdverdrijf is of echte wetenschap. Onze voorlopers zijn er niet meer om de uitkomsten te controleren. Onderzoekers van het technologisch instituut van de Amerikaanse staat Georgia hebben nu aan de hand van een snelle evolutie bij micro-organismen vastgesteld dat die terugrekenalgoritmes prima werk afleveren. Lees verder
Maken springende genen onze hersens uniek?
Alle cellen in ons lichaam hebben hetzelfde DNA, leren we op school. De laatste tijd is steeds meer bewijs gekomen dat die regel niet helemaal opgaat. Nu blijkt dat er bij hersencellen nogal wat variëteit is in het DNA. Elke hersencel is een beetje anders, stellen onderzoekers van, onder meer, het Amerikaanse Salk-instituut. Maken die ‘springende genen’ ons uniek? Of misschien wel ziek? Lees verder
De RNA-wereld lijkt weer een stukje waarschijnlijker
Onderzoekers zijn nog steeds op zoek naar de manier waarop leven is ontstaan. Als je nu naar de moleculaire samenstelling van een cel kijkt, het basiselement van een levend organisme, dan zie je een vreselijk ingewikkeld systeem. Hoe is dat begonnen? Een veel aangehangen idee is dat het met RNA begonnen, het ‘zuster’molecuul van DNA: de RNA-wereld. In die wereld had het RNA, onder meer, ook de pet op die DNA nu op heeft: de opslag van informatie. In die puzzel ontbrak nog wel het een en ander. Het lijkt er op dat er nu een belangrijk ontbrekend puzzelstuk is gevonden: de manier waarop RNA bijna alle RNA-moleculen kan produceren (behalve zichzelf). Lees verder
Homologe genen vinden elkaar zonder hulp (lijkt het)
Identieke stukken DNA kunnen elkaar vinden zonder dat ze daarbij geholpen hoeven worden door andere stoffen. Die theorie bestond al, maar nu schijnen onderzoekers van het Imperial College in Londen en van de Amerikaanse Harvard-universiteit dat te hebben aangetoond aan stukjes dubbelstrenging DNA. Het zou de vierde onafhankelijke demonstratie in glas zijn (dus niet in de cel), waarbij die aantrekking tussen dezelfde basevolgorde op het DNA is aangetoond en daarmee een nieuw bewijs dat de homologe gebieden op, dubbelstrengig DNA elkaar ‘herkennen’. Dat zou dan toch nog eerst in een levende cel moeten worden bewezen. Lees verder
Foutcontrole in aflezen van RNA ‘hersteld’
Het systeem dat leven heet zit fabelachtig in elkaar, maar is niet zonder weeffouten. Zo’n driemiljard jaar geleden zou een ‘fout’ zijn ontstaan in de manier van aflezen van genetische informatie van RNA, die ons nog steeds parten speelt. Terwijl de enzymen die DNA dupliceren, de DNA-polymerases het kopie nauwkeurig vergelijken met het origineel, doen zogeheten reverse transcriptases, die RNA omzetten in DNA, dat niet. Onderzoekers van de universiteit van Texas hebben een enzym gefabriceerd, RTX gedoopt, dat die fout repareert. Daarmee zouden RNA veel beter dan tot nu toe kunnen worden afgelezen. Dat zou de mogelijkheden van persoonsgerichte medicatie aanzienlijk vooruithelpen.
Lees verder