Met algoritmen het genoom wat minder ‘duister’ maken

Genfunctie en de grote aantallenHet is opmerkelijk dat we al aan het genoom willen sleutelen, maar daar eigenlijk nog niet eens zo veel van af weten. Dan heb ik het alleen nog maar over het coderende deel van het DNA en niet over de 98% van dat gigantische molecuul dat niet codeert (voor eiwitten). Van die 2% bekijken onderzoekers ook maar weer een beperkt aantal genen. Het grootste deel van ons erfgoed is ‘duister’. Onderzoekers hebben wat aan dat kennisgat willen doen door met algoritmes het DNA aan te pakken om een idee te krijgen wat dat ‘duistere’ genen-DNA zou kunnen doen. Een beginnetje (denk ik; as). Lees verder

Het ‘duister’ genoom wordt eindelijk onderzocht

DNA-uitlezing met CRISPR en nanoporiën

DNA-uitlezing met behulp van CRISPR en nanoporiën (afb: Max Planckinstituut)

Een groot deel van ons genoom bestaat uit herhalingen, wel honderden of duizenden keren. Die herhalingen zijn moeilijk te analyseren. Onderzoekers van het Max Planckinstituut voor moleculaire genetica in Berlijn  hebben nu een methode ontwikkeld om dit ‘duistere deel’ van het genoom te kunnen doorzoeken. Die methode is een combinatie van nanoporiegenoomuitlezing en de CRISPR/Cas-methode.
Lees verder

Mutatie zou Colombiaanse vrouw beschermen tegen Alzheimer

Wel beta-amyloïde maar niet dement

PET-opname van de hersens van de Colombiaanse vrouw die vol zitten met beta-amyloïdeplaques zonder dat ze last van dementie heeft (afb: Aaron Schultz)

In 2016 vloog een 73-jarige vrouw uit Medillin (Colombia) naar Boston om een hersenscan te laten maken, haar bloed te laten onderzoeken en naar haar genoom te laten kijken. Ze had een genetische afwijking in haar familie waardoor dementie vaak al op hun vijftigste toesloeg. Zij had nergens last van. Dat bleek het gevolg te zijn van een zeldzame mutatie aan het ‘Alzheimergen’ APOE. “Dit is een bijzonder geval”, zegt neurowetenschapper Yadong Huang van de Gladstone-instituten in San Francisco. “Mogelijk opent dit interessante wegen voor onderzoek en voor therapie. Lees verder

Genen kunnen ook ‘uit het niks’ komen

Kabeljauw heeft 'antivriesgen'

Kabeljauw heeft een de novo-‘antivriesgen’ (afb: WikiMedia Commons)

Lang is gedacht dat nieuwe genen varianten van oude genen zijn, maar het wordt steeds duidelijker dat de natuur veel vindingrijker is dan dat. Genen kunnen ook zo maar ‘uit het niks’ ontstaan, uit stukken en brokken niet-coderend DNA. Lees verder

Verdediging alvleesklierkanker doorbroken (?)

Vezelachtig weefsel schermt alvleeskliertumor af

Alvleeskliertumoren worden omringd door vezeligachtig weefsel (rood) dat de kankercellen effectief afschermt (afb: DeNardo-lab)

Kankercellen hebben allerlei ‘tactieken’ om hun vijanden (=medicijnen) de pas af te snijden en zo te overleven. Onderzoekers van het Amerikaanse Cold Spring Harbor-lab denken diverse vluchtwegen voor alvleesklierkankercellen met succes te hebben afgesneden. Bij muisjes lijkt die aanpak te hebben geleid tot krimp van de tumor in de alvleesklier. Lees verder

Onderzoekers herprogrammeren gen met licht (zeggen ze)

Lichtgestuurd gen

Het lichtgestuurde gen FGFR1, met en zonder licht (afb: Proc. of IEEE)

Al jaren wordt er geëxperimenteerd om met licht de activiteit van genen te sturen, een tak van sport die optogenetica wordt genoemd. Onderzoekers van de universiteit van Buffalo (nog nooit van gehoord) zeggen met die methode het gen FGFR1 te hebben ‘geherprogrammeerd’ in een kweek van hersencellen. Dat gen speelt een belangrijke rol in de ontwikkeling van embryo tot volgroeid organisme. Lees verder

Enig idee hoe organen ontstaan (?)

De orgaanontwikkeling

De orgaanontwikkeling bij zoogdieren doorloopt een vast ‘genprogramma’ dat in het begin grotendeels overeenkomt (afb: Kaessmann-lab)

Het ontstaan van het leven en alles wat er omheen hangt is nog steeds omhangen met vele geheimen (ook al doen we of we daar zo veel van af weten). Zo is voornamelijk duister hoe organen zich in een embryo ontwikkelen. Onderzoekers van de universiteit in het Duitse Heidelberg hebben, geholpen door de modernste DNA-uitlezers, wat licht in die duisternis geworpen. Er lijkt een soort ‘genetisch programma’ te zijn dat bepaalt welke organen zich waar in de vrucht vormen dat zowel geldt voor mensen als ook een aantal andere zoogdieren. Lees verder

CRISPR gaat huwelijk aan met springende genen

Werking van springende genen

Zo zouden transposonen zich verspreiden door het genoom (afb: https://www.ebi.ac.uk)

Voor een systeem waar het zo nauw luistert, het leven, heeft het wel veel ‘losse eindjes’ (althans, zo zien ze er uit met mijn beperkte kennis van de genetica). Transposonen, vaak springende genen genoemd, horen daar wat mij betreft toe. Onderzoekers hebben nu die wispelturige genen in het huwelijk laten treden met de CRISPR-methode om DNA te veranderen. Daardoor zou het makkelijker worden om het DNA te veranderen en daar zou niet bij geknipt hoeven worden. Lees verder

Ons lijf stikt van de mutaties

Mutaties in weefsels

De weefsels waarvan monsters zijn genomen (bij mannen en vrouwen verschillend) en van de cellen het RNA is uitgelezen (afb: Gad Getz et. al.)

Een analyse van de RNA-gegevens van zo’n 500 proefpersonen van 29 verschillende weefsels heeft aangegeven dat ons lijf stikt van de mutaties. We zijn heftig mozaïsch oftewel door die mutaties hebben cellen in een weefsel verschillende genomen. Dat mozaïcisme stijgt met de jaren. Vooral longen huid hebben daar last van en dat zijn niet toevallig twee organen die het meest met de buitenwereld in aanraking komen. Lees verder

Bacteriën maken nieuwe genen uit ‘troep-DNA’

Ontstaan nieuwe genen in E. coli's

Nieuwe genen onstaan bij E. coli-bacteriën uit willekeurige sequenties in het ‘niet-coderende’ DNA. In het ringvormige DNA van de bacterie plaatsten onderzoeker een halfmiljard willekeurige stukjes DNA (afb: univ. van Uppsala)

Een van de (vele) vragen die ontwikkelingsbiologen zich stellen is hoe nieuwe genen ontstaan. Onderzoekers in Zweden denken nu te weten hoe dat bij bacteriën werkt. Die neiuwe genen kunnen worden gevormd uit DNA-sequenties die functieloos zouden zijn, ooit junk(=troep)-DNA genoemd. Lees verder