
Kathy Niakan (foto: Francis Crick-instituut)

Kathy Niakan (foto: Francis Crick-instituut)

De ontwikkeling en differentiëring van hersencellen wordt gestuurd door proneurale eiwitten die zelf weer gestuurd worden door een ’tijdschakelaar’ (afb: Cell)
Het leven kunnen we overal om ons heen waarnemen, we kunnen er wat aan morrelen, maar vele aspecten daarvan zijn nog steeds een groot raadsel. Sterker nog: het lijkt wel alsof de mens al onderzoekende steeds meer vragen opdiept in plaats van beantwoordt. Een van de vragen is waarom zenuwcellen in ons lijf niet of nauwelijks vernieuwen. Nu hebben Bassem Haddan en medeonderzoekers aan de Katholieke Universiteit een groep eiwitten ontdekt die een rol spelen bij de aanmaak van zenuwcellen. Dat proces bepaalt de differentiatie van de cellen en de ontwikkeling van het zenuwstelsel. Voorlopig zullen ze nog wel het een en ander moeten uitvissen alvorens te denken aan therpaeutische mogelijkheden van hun ontdekking. Lees verder

De geluidgrijper kan cellen met een nauwkeurigheid van 1 tot 2 µm in een celstructuur plaatsen (afb: Tony Jun Huang/Penn)

Deze dwergmakaak met kind is niet bij het onderzoek betrokken
Veel mensen hebben geen problemen met dierproeven, zolang die maar niet al te dicht in de buurt komen. Het wordt anders als het over honden of aapjes gaat. En dan nog? Wat zeggen die dierproeven over ziektes of medicijnen bij de mens? Onlangs hebben Chinese onderzoekers aapjes een soort autisme ‘aangesmeerd’ met behulp van genetische manipulatie. Kan dat wel? Hebben wij mensen daar wat aan? Lees verder

DNA codeert ook voor ‘nutteloze’ lange, nietcoderende RNA-moleculen (afb: Chang-lab)
Op school hebben we geleerd dat in de genen op het erfelijkheidsmolecuul DNA de genen liggen, die coderen voor eiwitten. Eiwitten zijn de molecullen die het meeste werk doen in een levend organisme. Sommige genen coderen niet voor eiwitten, maar ‘produceren’ zogenaamd lang, nietcoderend RNA. Er schijnen zo’n 58 000 nietcoderende RNA-moleculen te worden aangemaakt bij mensen. Maar van enkele lnc-RNA’s is maar bekend wat ze doen. Zo is een van die lncRNA’s belangrijk voor de gezondheid van vrouwen. Dat molecuul wordt geproduceerd door het X-chromosoom. Daar heeft een vrouw er twee van en de man maar een. Het eiwit Xist schakelt het Xist-gen op het ene X-chromosoom bij vrouwen uit. Gebeurt dat niet, dan zou dat kunnen leiden tot kanker, is uit muisproeven gebleken. Dat een zo simpele bouwwerk dat ons voor ogen stond (DNA–>boodschapper-RNA–>eiwit) blijkt al studerende steeds ingewikkelder te worden. Wat doen al die lange, nietcoderende RNA-moleculen? Howard Chang van de Stanford-universiteit en medeonderzoekers hebben nu van een aantal van die lnc-RNA’s achterhaald wat ze uitvreten. LncRNA’s zijn best wel belangrijk, zo bleek Chang en de zijnen. Lees verder

De haardunne kweekbuisjes met netwerken van hersencellen
Onderzoekers in de VS hebben in het lab netwerken van hersencellen gekweekt. Het is het idee dat die netwerken de hersencellen moeten vervangen die door ziekte of hartaanval zijn verdwenen. Die vervanging zou kunnen plaatsvinden vrijwel zonder dat de rest van de hersens wordt beschadigd, zo stellen de onderzoekers van de universiteit van Pennsylvania, doordat er geen naalden meer worden gebruikt bij de implantatie. De slachtoffers waren ratten. Lees verder

De herprogrammering van fibroblasten (langwerpig) in keratinocyten (keivormig) zoals Mogrify had berekend. (Nature/Rackham et.al)
Onderzoekers uit diverse landen hebben een programma/algoritme ontwikkeld, waarmee te voorspellen is hoe je cellen kunt reprogrammeren, zeggen ze. Het schijnt ook echt te werken. Ze noemen dat Mogrify, maar als je dat aanklikt kom je bij beeldbewerking uit. De keuze van de naam lijkt niet handig. De onderzoekers hebben het programma beschikbaar gemaakt voor andere onderzoekers, ter verbetering en uitbreiding.
Lees verder

Een menselijke blastula

‘Geknepen’ cellen in de gel (afb: Matthias Lutolf/EPFL)
Onderzoekers van de polytechnische school in Lausanne (EPFL, Zwi) zouden een methode hebben gevonden om gewone cellen om te vormen tot stamcellen. Dat schijnen ze te doen door de cellen te ‘knijpen’. Laten we hopen dat dit niet net zo’n onzin is als de ‘zure’ stamcel van het Japanse RIKEN-instituut die in 2014 voor grote opschudding heeft gezorgd. Uit het persbericht en de samenvatting van het artikel valt niet op te maken of knijpen de enige behandeling is die van gewone cellen stamcellen maakt. Lees verder

De CRISPR-techniek zou nog niet precies genoeg zijn om mensen te behandelen (afb: Wiki Commons)