Mikrogliacellen zijn belangrijk voor hersens

Mikrogliacel

Mikrogliacel repareert een bloedvaatje in de hersens (foto: neoweb.nl)

Tot voor niet zo heel lang geleden bestonden de hersens uit neuronen. Gliacellen waren wel ontdekt, maar die cellen, die de helft van het hersenvolume innemen, werd slechts een bescheiden functie toegedacht als vuller en schoonmaker (glia is Grieks voor lijm). Vrij recent blijkt dat de gliacellen, vooral de mikrogliacellen,  wezenlijk zijn voor het functioneren van de hersens. Steffen Jung van het Israelische Weizman ontwierp een genetische ‘knop’ om te achterhalen wat die ‘lijmcellen’ nu precies doen. Recent ontdekte Jung en zijn medeonderzoekers dat de mikrogliacellen een rol spelen bij de muisvariant van multiple sclerose (MS)Lees verder

Geeft een slapend gen ons het eeuwige leven?

Lin28a-muizen

Haar bij muizen met geactiveerd Lin28a-gen groeit sneller aan (foto: Science)

Geeft een slapend gen ons het eeuwige leven? Voor sommigen zou dat mooi zijn, maar ik heb zo mijn twijfels. Onderzoekers van de Harvard-universiteit in Cambridge (VS) denken tenminste dat ze een stap op de weg naar het eeuwige leven hebben gemaakt. Dat slapende gen, aangeduid met Lin28a zou daarbij de sleutel (kunnen) zijn. Dat gen is actief in embryo’s van vele zoogdieren (ook de mens),  maar ‘slaapt’ bij volwassenen. Muizen met een geactiveerd Lin28a-gen herstelden veel sneller de schade aan spieren en (bepaalde) weefsels dan muizen met een inactief Lin28a-gen. Ook hun haar groeit sneller. Ook nooit weg. De onderzoekers meldden niet dat de muizen langer leefden.
Lees verder

Is de mens een product van zijn HARoom?

Wat maakt de mens mens?Wat maakt dat de mens een mens geworden is? Katherine Pollard van de universiteit van Californië in San Fransisco (UCSF) denkt dat, wat aangeduid wordt met, menselijk versnelde delen DNA (een wat kromme vertaling van het kromme Engelse human accelerated regions oftewel HAR’s) daar een speciale rol in spelen. Die gedeelten van DNA worden zo genoemd omdat ze, evolutionair gezien, nogal snel verander(d?)en en omdat ze geassocieerd worden met menselijke eigenschappen. Niet omdat dieren die niet hebben, maar omdat die anders zijn dan bij de mens. Pollard was op zoek naar de ontwikkeling van mensspecifieke kenmerken in het DNA op zoek naar een antwoord op de vraag: Wat maakt ons mens? Lees verder

Veel hersencellen hebben afwijkend genoom

Lang is gedacht, en ik denk het nog steeds, dat alle cellen in ons lichaam hetzelfde DNA hebben. Onderzoekers van het Amerikaanse Salk-instituut in La Jolla hebben die zekerheid nu op losse schroeven gezet. Een groot deel van onze hersencellen, zo heeft hun studie aannemelijk gemaakt, heeft afwijkend erfgoed dat ze, die cellen, uniek maakt. Dat zou ook voor andere celtypen kunnen gelden (en waarom ook niet?) Lees verder

Italië verbiedt omstreden stamceltherapie

Beatrice Lorenzin

Minister Beatrice Lorenzin

De Italiaanse minister voor gezondheid, Beatrice Lorenzin, heeft klinische proeven met de omstreden stamceltherapie van het in Turijn gevestigde bedrijf Stamina verboden (stamcellen in het Italiaans zijn cellule staminali; stamina betekent ook uithoudingsvermogen). De zogeheten Stamina-methode is een behandeling die gebaseerd is op stamcellen uit het beenmerg. Volgens Staminachef  Davide Vannoni zouden die stamcellen onder bepaalde omstandigheden kunnen uitgroeien tot hersencellen. Daarmee zou het aftakelingsproces in de hersens (neurodegeneratie, in nette termen) bij ziektes zoals Alzheimer of Parkinson kunnen worden gestopt. Er is echter geen wetenschappelijk bewijs dat de methode ook werkt, stelt het wetenschapsblad Science.   Lees verder

Trisomie-21 (=Down) goed voor leren en geheugen muizen

Down-syndroomSoms lees je iets en denk je: Dat kan niet kloppen. De Franse webstek Futura-Sciences kwam met een verhaal dat Franse onderzoekers met trisomie 21 muizen hun geheugen had teruggegeven. Trisomie 21? Die veroorzaakt toch de ziekte van Down? Dat klopt, maar het stond er toch echt (in het Frans dan). Dat zou alles te maken hebben met een stof, die wordt aangeduid met α5IA. De behandelde muizen kregen niet alleen een goed geheugen, maar konden ook beter leren dan niet behandelde en dat alles zonder bijwerkingen, stelt het webblad. Lees verder

Parkinsonpatiënt heeft misschien baat bij eigen stamcellen

Stamceltransplantatie

Uit eigen stamcellen ontwikkelden zich gezonde neuronen (links). Niet eigen stamcellen gaven een afweerreactie (rechts) (foto: Cell)

Geïnduceerde pluripotente stamcellen (iPSC) gemaakt van eigen volwassen cellen houden de belofte in dat ze wel eens van grote therapeutische waarde kunnen zijn. Er bestaan echter ook grote twijfels of dat inderdaad zo is. Die eigen stamcellen willen zich nog wel eens ontwikkelen tot kankercellen en dan komt de patiënt natuurlijk van de regen in de drup. Onderzoek met iPS-cellen bij knaagdieren, liet zien dat het eigen afweersysteem die eigen stamcellen aanvallen. Opmerkelijk is dat dat bij primaten niet zo is. Lees verder

Internetmiljonair voorziet robot met ‘menselijk’ brein

De Russische internetmiljonair Dimitri ItskovDe Russische internetmiljonair Dmitri Itskov wil robots maken met een, digitale, menselijke geest. Op een symposium in New York presenteerde hij zijn avatarplan dat dat doel zou moeten verwezenlijken.
Aan het symposium, een initiatief van Itskov, werd deelgenomen door een groot aantal wetenschappers en een paar robots. Vooral de presentatie van de Japanse onderzoeker Hiroshi Ishiguro, die een levensechte kopie van zichzelf op het podium het woord liet doen, dwong bewondering af. Hij vroeg zich af of onsterfelijkheid wenselijk is en, als het antwoord ‘ja’ is, wat de beste manier is om dat doel te bereiken.
Itskov (32) vindt verrichtingen van wetenschappers als Ishiguro niet ver genoeg gaan. Hij wil een beweging tot stand brengen die eendrachtig werkt aan een gemeenschappelijk doel, gesteund door overheden en de Verenigde Naties. “We bevinden ons in een tijd waarin technologie de menselijke evolutie kan beïnvloeden. Ik wil dat we de toekomst vormgeven, ter discussie stellen en scenario’s vermijden die de mensheid zouden kunnen schaden.”, zei hij volgens de Volkskrant.
In 2020 moeten mensen in staat zijn robots van afstand, met behulp van gedachten, te besturen. Onlangs heeft een experiment van de universiteit van Minnesota laten zien dat een vliegtuigje met gedachten is te besturen. In 2025 zou het menselijk brein moeten worden getransplanteerd naar een kunstmatige omgeving, een soort robotprothese ter vervanging van een stervend lichaam. In 2035 zou de techniek dan zo ver moeten zijn dat de menselijke geest een op een is om te zetten in een digitaal equivalent. In 2045 zouden kunstmatige breinen onstoffelijke, holografische lichamen moeten kunnen besturen.
Niet iedereen op de conferentie slikte het verhaal van Itskov als zoete koek.
Aartsbisschop Lazar Puhalo van de Orthodoxe Kerk in Amerika, die een wetenschappelijke achtergrond heeft in neurobiologie en natuurkunde, had grote twijfels. “Veel van wat we hier bespreken, is onmogelijk.”
Itskov erkent dat zijn ideeën een deel van het menselijke wezen in de weg staan, maar volgens hem is het dat waard. ‘Bij alles wat we ondernemen, raken we altijd iets kwijt’, zei hij. ‘We moeten altijd een prijs betalen.’

Bron: De Volkskrant

Bindweefselcellen omtoveren in zenuwcellen

Bindweefselcellen veranderd in zenuwcellen (afb. Cell Reports) Onderzoekers van de universiteit van Wisconsin hebben bindweefselcellen (fibroblasten) omgetoverd tot neuronen. Dat is geen wereldnieuws want al in 2006 liet de Japanse onderzoeker Sjinja Yamanaka dat je gespecialiseerde cellen kunt veranderen in zogeheten pluripotente stamcellen. Stamcellen zijn dan weer cellen die zich kunnen ontwikkelen tot gespecialiseerde cellen zoals zenuwcellen (neuronen), huidcellen of welk type cellen dan ook. De methode die de Amerikaanse onderzoekers, vrijwel allen voorzien van een Chinese naam, verliep echter niet via de omvorming tot stamcellen, maar uit de fibroblasten werden direct zenuwcellen gevormd. Daartoe hadden de onderzoekers de hulp ingeroepen van het Sendai-virus, die voorzien was van wat Yamanaka-factoren wordt genoemd, bepaalde genen die Yamanaka gebruikte om van gespecialiseerde cellen pluripotente stamcellen te maken. De cellen, ze waren zowel van mensen als van apen afkomstig, werden op kweek gezet met aantal andere ingrediënten, en op 39°C gebracht om, onder meer, het virus te deactiveren. Na 13 dagen verschenen de eerste neurale voorlopercellen. Er was geen spoor van pluripotente stamcellen te vinden.
Die pluripotente stamcellen zijn weliswaar veelbelovend (je hebt geen embryonale stamcellen meer nodig), maar hebben toch zo hun nare kantjes. Het wil nog wel eens voorkomen dat dat type cellen zich ontwikkelt tot kankercellen en ook kan het zo zijn dat zo’n pluripotente cel zich, bijvoorbeeld, in de hersenen ontwikkelt tot levercel. Met deze methode is die klip omzeild.
De op deze wijze gevormde zenuwcellen werden vervolgens in de hersenen van een pasgeboren muis ingebracht. Volgens onderzoeksleider Su-Chun Zhang ontwikkelden die cellen zich tot normale hersencellen. Geen kanker, dus.
Ook elders hebben onderzoekers bindweefselcellen veranderd in zenuwcellen via een andere route, zo meldt Futura-Sciences, maar volgens de onderzoekers van de universiteit van Wisconsin zou hun methode zekerder zijn een beter toegerust voor therapeutische toepassingen.

Bron: Futura-Sciences

Is het lichaam (in vivo) repareerbaar?

Een groep Japanse onderzoekers rond Shoji Takeuchi van de technische universiteit van Tokio heeft een systeem ontwikkeld waarmee in het lichaam weefsels kunnen worden hersteld, zo viel te lezen in Le Monde. Ze gebruikten daartoe mikrovezels die gevuld (kunnen) worden met levende cellen en eiwitten. Met behulp van die gevulde mikrovezels zouden in vivo (in het lichaam zelf dus) spierweefsel, bloedvaten en hersencellen kunnen worden gerepareerd, schrijven de onderzoekers in een artikel in het blad Nature Materials. Zo zouden ze er in geslaagd zijn het glucosepeil bij een diabetische muis te stabiliseren door het, via mikrovezels, ‘implanteren’ van alvleeskliercellen in de nier van het muisje, die het voor de suikerhouding noodzakelijke insuline produceren.
Mikrovezels met levende cellen
Al langer wordt er gewerkt met microvezels op basis van een kunstmatige hydrogel, maar met deze gels lukte het niet cellen tot natuurlijke weefsels te vormen. Om dat wel voor elkaar te krijgen maakten ze gebruik van extracellulaire eiwitten als fibrine en collageen. Om zulke met cellen gevulde vezels te maken, is echter een stuk lastiger dan met hydrogel alleen. De onderzoekers maken hun mikrovezels in drie stappen. Eerst wordt met een soort mikroinjectienaald een hydrogelbuisje gemaakt. De eiwitten die nodig zijn om de mikrovezels geschikt te maken voor ‘bewoning’ van levende cellen, worden vervolgens toegevoegd plus de cellen. Daarna wordt de hydrogel, die slechts als mal heeft gediend, verwijderd. Tot nu toe zijn met drie typen eiwitten en tien celtypen op deze wijze met cellen gevulde mikrovezels gemaakt, klein in doorsnede maar tot wel een meter lang.
Naast de proef met de alvleeskliercellen hebben de onderzoekers ook mikrovezels met hartcellen van een rat gevuld. Die begonnen na drie dagen spontaan samen te trekken. Mikrovezels met endotheelcellen, die de binnenkant van bloedvaten bedekken, vormden na vier dagen een bloedvat. Op mikrovezels met hersencellen van een rat, groeide een netwerk van neuronen. De onderzoekers slaagden er ook in met behulp van drie mikrovezels, met een totale lengte van 2,5 m, een driedimensionaal weefsel te maken van 2 bij 1 cm. Dat bewijst, volgens hen, dat met behulp van gevulde mikrovezels complexe weefsels kunnen worden gemaakt. Die techniek zou nog verbeterd kunnen worden door gebruik te maken van mallen. Daarbij valt te denken aan bloedvaten of aan het ‘repareren’ van (delen van) hersenen, zo speculeren zij. Het onderzoek van Takeuchi en de zijnen is onderdeel van een breder onderzoekprogramma ‘biohybride innovatie dat wordt uitgevoerd in het kader van het Japanse Erato-onderzoeksprogramma.

Bron: Le Monde