Tragere bewerking van bRNA’s leidt tot celdood

Splitsoom

Fouten bij het splitsen van bRNA kunnen leiden tot de celdood (afb: Ivan Đikić et al./Science)

Mensen hebben zo’n 20 000 genen, maar toch zijn cellen in staat op honderdduizenden verschillende eiwitten te produceren. Die verscheidenheid wordt mogelijk gemaakt door nabewerking van boodschapper-RNA’s die de ‘mal’ vormen voor die verscheidenheid.
Dat splitsproces wordt door verschillende eiwitten uitgevoerd dat in het Engels tezamen het spliceosome wordt genoemd, maar dat ik in dit blog splitsoom noem. Daarbij kan wel eens iets fout gaan en dan loopt de benodigde eiwitproductie in de soep en sterft de cel. Wellicht een doel voor een kanker- of Alzheimertherapie, denken de onderzoekers. Lees verder

Stercellen met beta-amyloïdeplaques

Stercellen met beta-amyloïdeplaques (blauw) (afb: Hoon Ryu/Molecular Degeneration)

Onderzoekers rond Hoon Ryu van het Koreaanse instituut voor wetenschap en techniek (KIST) hebben een aanpak gevonden dat mogelijk iets kan betekenen voor het tegengaan van de achteruitgang van hersens bij Alzheimerpatiënten. Ze richtten hun pijlen op stercellen (een vorm van afweercellen in ons brein) om die aan te zetten tot het opruimen van de beta-ammyloïdeophopingen die leiden tot het afsterven van hersencellen. Overigens zijn er al eerder manieren bedacht om die plaques op te ruimen zonder dat dat veel effect had op het verloop van de ziekte.
Lees verder

Genen aan en uit te zetten met DNA-schakelaars

TewheylabOnderzoekers rond Ryan Tewhey van het Jacksonlab hebben kunstmatige intelligentie gebruikt om DNA-schakelaars te maken waarmee genen naar believen kunnen worden in- of uitgeschakeld. Ze denken daarmee, onder meer, gentherapieën effectiever en specifieker te kunnen maken. Daarmee zouden die alleen in een bepaalde celtype veranderingen aan kunnen brengen. Lees verder

‘Eeuwige’ haai heeft springende genen en een een ‘feilloos’ DNA-herstel

Groenlandse haai

Groenlandse haai (Somniosus microcephalus) is een bedreigde diersoort (afb: WikiMedia Commons)

De mens is al eeuwen lang op zoek naar het eeuwige leven. Dan is het ‘geheim’ van de Groenlandse haai (Somniosus microcephalus), met een gemiddelde leeftijd van zo’n vierhonderd jaar (volgens de Wikipedia zelfs vijfhonderd) natuurlijk het ontsleutelen waard. Het genoom van de grote vis blijkt enorm te zijn en uitgerust met bijzondere reparatiemechanismen voor het DNA, zagen onderzoekersters rond Arne Sahm van de Ruhruniversiteit in Bochum. Volgens de hoogleraar heeft die lange levensduur veel te maken met de verbeterde DNA-reparatiemechanismen van de haai. Lees verder

Zeeanemoontje wordt ‘onsterfelijk’ door oude genen

Nematostella vectensis

Het zeeanemoontje Nematostella vectensis is ‘onsterfelijk’ (afb: WikiMedia Commons)

De zeeanemoon Nematostella vectensis is feitelijk onsterfelijk. Ontwikkelings-biologen onder aanvoering van Ulrich Technau (@dres) van de Universiteit van Wenen zouden voor het eerst mogelijke kandidaten voor multipotente stamcellen in de zeeanemoon hebben geïdentificeerd. Deze stamcellen worden gereguleerd door evolutionair zeer goed bewaarde genen, die bij mensen en andere zoogdieren doorgaans alleen actief zijn bij de vorming van geslachtscellen, maar die oudere diersoorten zoals neteldieren een hoge mate van herstelvermogen geven waarmee die, in theorie, niet zouden verouderen. En weer lonkt de eeuwig jonge mens. Lees verder

Weer een nauwkeuriger CRISPR/Cas-techniek ontwikkeld (?)

SEED/Harvest

Het SEED/Harvest-systeem in beeld (afb: Markus Affolter et. al/Cell)

Al sinds de CRISPR/Cas-methode van bacteriën wordt gebruikt voor het veranderen van erfgoed wordt er gesleuteld aan die methode om die nog betrouwbaarder te maken. De CRISPR-methode wil het genoom nog wel eens op andere dan op de voorziene plek veranderen en dat is natuurlijk niet de bedoeling. Nu denken onderzoekers van, onder meer, de universiteit van Bazel (Zwi) met behulp van een ‘merker’ dat probleem te hebben opgelost (pdf-bestand). Overigens lijkt de methode niet bedoeld om fouten in het genoom te repareren, maar meer voor onderzoeksdoeleinden. Lees verder

Zijn enzymen voor springende genen de nieuwe CRISPR?

Springende genen in maïs

Springende genen in maïs zogen voor zeer diverse kleurpatronen van de korrels (afb: WikiMedia Commons)

Een moleculaire eigenaardigheid gevonden in bacteriën zou wel eens een nieuwe grote stap in de genoombe-werking kunne zijn, waardoor onderzoekers grote segmenten DNA kunnen invoegen, verwijderen of omdraaien. De techniek, beschreven in drie artikelen die deze maand in Nature (1 en 2) en in Nature Communications  zijn gepubliceerd, maakt gebruik van het natuurlijke vermogen van de zogenaamde springende genen om zichzelf in genomen in te voegen. Als deze ’truc’ van bacteriën ook in zoogdierencellen werkt, dan zou deze techniek weleens een concurrent kunnen worden van de CRISPR-methode om het genoom te bewerken. Tot nu toe lijkt die techniek haar belofte nog steeds niet echt te hebben ingelost. Lees verder

Fotosynthese met CRISPR/Cas9 ‘opgevoerd’

Rijsthalmen

Oryza oftewel rijst

Het schijnt dat een groep onderzoekers van, de universiteit van Californië in Berkeley met CRISPR/Cas9 het genoom van een rijstsoort heeft veranderd om de activiteit van een aantal genen te verhogen zodat de fotosynthese (de omzetting van zonne-energi8e in scheikundige energie) wordt ‘opgevoerd’ om zo de oogst te vergroten. Lees verder

Zonder zes micro-RNA’s wordt foetus met Y-chromosoom een vrouwtje

Het Y-chromosoom

Het Y-chromosoom

Als bij muisembryo’s de aanmaak van zes kleine RNA-moleculen (microRNA’s) dan blijken vruchten met het mannelijke Y-chromosoom toch vrouwtjes te worden, zo konden onderzoekers rond Rafael Jiménez van de universiteit van Granada (Sp) constateren. Die microRNA’s blijken een belangrijke rol te spelen in de geslachtsbepaling van zoogdieren (in ieder geval van muisjes). Kennelijk maken niet alleen de geslachtschromosomen (de X– en Y-chromosoom) uit of een foetus mannelijk of vrouwelijk wordt. Lees verder

Truc gebruikt om grote stukken DNA in plantengenoom in te voegen

Geninbouw in planten

Inbouw van grote stukken DNA (gen X) in een tabaksplant. Van links naar rechts het resultaat met een inactieve Cas9-variant, een actieve DNA-variant en een combinatie met endonuclease (afb: Leibnizintituut IPB)

Wetenschappers rond Alain Tissier van het Leibnizinstituut voor plantenbiochemie (IPB) zijn er naar het schijnt voor het eerst in geslaagd grote gensecties op een stabiele en nauwkeurige manier zeer efficiënt in het DNA van  planten in te voegen. Daartoe veranderden ze de CRISPR/Cas-methode voor het bewerken van genen. Het verbeterde proces biedt volgens de onderzoekers grote kansen voor gerichte genoombewerking van hogere planten voor zowel veredeling als wetenschap. Lees verder