Mogelijk stamceltherapie als echte remedie voor reuma

Falk Hiepe

Reumatoloog Falk Hiepe van het Charité-ziekenhuis in Berlijn.

We hoeven niet meteen hoera te roepen, maar het zou kunnen zijn dat stamcellen in combinatie met chemotherapie een oplossing zou kunnen bieden aan reumalijders. Dat meldt de Duitse vereniging voor reumatologie (DGRh)  als ‘smaakmaker’ voor het DGRh-congres, dat later deze maand zal worden gehouden in Mannheim en Heidelberg.
Reuma is een uiterst vervelende en pijnlijke auto-immuunziekte waar geen medicijn voor is. Hun leven lang moeten reumalijders pillen slikken om het leven dragelijk te houden, maar bij eenderde van de patiënten helpen de medicijnen niet die het op hol geslagen afweersysteem moeten onderdrukken. In Duitsland loopt een onderzoek bij 130 reumapatiënten om met behulp van stamcellen in combinatie met een chemotherapie het ‘geheugen’ van het afweersysteem te herinstellen, zodat dat zich niet meer keert tegen lichaamseigen stoffen. De resultaten tot nu toe worden ‘veelbelovend’ genoemd.
Bij auto-immuunziektes als reuma spelen zogeheten auto-antilichamen. Die veroorzaken de ellende. Het ligt dan ook in de rede het aantal daarvan te beperken. Dat gebeurt nu met behulp van medicijnen, maar, zoals gezegd, die slaan niet bij alle patiënten aan. De ware schuldigen zijn de plasmacellen in het beenmerg. Die hebben, kennelijk, een geheugen en maken voortdurend de verkeerde (=auto-) antilichamen aan.
Die plasmacellen uitschakelen lijkt dan een afdoende remedie. “Dat kan met behulp van chemotherapie”, stelt Falk Hiepe van het Berlijnse Charité-ziekenhuis. Daarmee zou het ‘afweergeheugen’ gewist worden, om in het in computertermen te houden, maar daarmee is de patiënt meteen ook weerloos tegen alle infecties waar hij tegenaan loopt. Dat ‘geheugen’ zou weer opnieuw moeten worden opgebouwd met behulp van stamcellen. Hiepe: “Het ziet er naar uit dat zich zo na het uitschakelen van het oude, foute afweergeheugen, weer een normaal functionerend immuunsysteem kan ontwikkelen. De patiënten hebben dan geen behandeling meer nodig.”

In Europa hebben al meer dan 1500 patiënten met autoimmuunziektes een stamcelbehandeling gehad. Bij tweederde daarvan verbeterde de situatie zich voor langere tijd en de meesten werden beter behandelbaar dan voor de stamceltransplantatie. Omdat het afweersysteem tijdelijk wordt platgelegd, is het infectiegevaar voor de patiënten groot. Daarom komen alleen mensen in aanmerking waarbij de afweeronderdrukkende medicijnen niet werken.

Er wordt onderzocht of er een alternatief voor de allesverwoestende chemotherapie is in de vorm van bortezomib, een medicijn dat wordt toegepast bij beenmergkanker. Dit middel schakelt de foutgeprogrammeerde geheugenplasmacellen maar voor de helft uit, die vervolgens weer snel worden aangemaakt. “We zoeken naar andere mogelijkheden om die plasmacellen efficiënt en gericht te vernietigen. Die dierproeven daarmee geven goede hoop”, stelt Hiepe in aanloop naar het DGRh-congres.

Bron: idw-online

Kunstorganellen zetten radicalen om in zuurstof en water

kunstperoxisoom
Onderzoekers van de universiteit van het Zwitserse Bazel hebben kunstmatige organellen gemaakt die giftige zuurstofverbindingen (in dit geval zuurstofradicalen) kunnen afbreken. Organellen zijn in een ‘normale’ (eukaryotische) cel onderdeeltjes die gespecialiseerd zijn in een bepaalde taak zoals het ribosoom of de celkern. Deze ontwikkeling opent mogelijkheden geneesmiddelen direct in de cel hun heilzame werk te laten uitvoeren.
Zuurstofradicalen ontstaan als bijproduct van de stofwisseling, maar ook onder invloed van ultravioletlicht of in uitlaatgassen van auto’s. Normaal gesproken worden radicalen binnen de perken gehouden, maar als de natuurlijke regulering ‘overvraagd’ wordt en de concentratie te hoog wordt ontstaat er zogeheten oxidatieve stress, die, naar vermoed, kan leiden tot allerlei ziektes als kanker en artritis (reuma).
Bij de regulering van de radicalen spelen de peroxisomen (een organel in de cel) een belangrijke rol. Het is onderzoekers van de onderzoeksgroep van Cornelia Palivan gelukt om kunstmatige peroxisomen te maken die hetzelfde werk doen als de natuurlijke. Het kunstmatige peroxisoom is een nanocapsule (een nanometer is 1 miljoenste mm) met twee verschillende soorten enzymen, die zuurstofradicalen afbreken in zuurstof en water.
Om te bewijzen dat de kunstperoxisomen ook echt werken werd het membraan van de kunstorganel voorzien van eiwitten, die ervoor moeten zorgen dat die ook in de cel worden opgenomen waar ze hun deradicaliserende taak kunnen aanvangen. Dat lukte.

Bron: Alpha-Galileo

Peptide’schakelaar’ door licht gestuurd

Peptidelichtschakelaar Onderzoekers van een aantal Catalaanse instituten hebben peptiden (relatief korte stukjes eiwit) gemaakt die onder invloed van licht van een bepaalde golflengte van vorm veranderen. Daarmee maken ze al of niet de reacties tussen andere eiwitten mogelijk. Je moet dan denken aan het openen of sluiten van ionkanalen in het celmembraan, waardoor stoffen wel of niet de cel binnen kunnen komen (of er uit). De Italiaanse onderzoekster Laura Nevola, verbonden aan het instituut voor biomedisch onderzoek van projectleider Ernest Giralt, heeft vier jaar gewerkt aan de ontwikkeling van de lichtgevoelige peptiden. Hiermee zouden biologische processen kunnen worden bestuurd en bestudeerd.
Dan zal het toch vooral gaan om cellen in een celkweek in een petrischaaltje (een glazen labschaaltje), al schijnen de gedachten ook uit te gaan naar therapeutische toepassingen bij huidaandoeningen of het oog. Er zal wel iets aan de golflengte gedaan moeten worden waarop de peptiden reageren. De nu gebruikte uv-straling (380 nm) is niet gezond voor de cel. Bovendien zal het gebruikte licht enig doordringend vermogen moeten hebben om het geheel te laten werken, zeker als het als therapeutische hulpmiddel zou worden ingezet. Ook de stabiliteit van de gemaakte peptiden laat nog te wensen over.

Bron: Eurekalert

Afweer gedeeltelijk onderdrukt

Gedeeltelijke onderdrukking afweersysteem Ons afweersysteem is een mooi systeem, maar soms zou je willen dat het niet werkte. Mensen met een transplantaten moeten afweerremmende medicijnen slikken en sommige medicijnen worden bestookt door ons defensiesysteem. Of soms is ons afweersysteem in de war en dan keert het zich tegen het eigen lijf zoals bij reuma.
Dat hele afweersysteem lamleggen is niet zo’n goed idee, maar in bepaalde gevallen, zoals bij transplantaties, ontkom je daar niet aan. Wat zou het niet aardig zijn als je alleen dat stukje van het afweersysteem zou uitschakelen dat voor ‘moeilijkheden’ zorgt (kan zorgen).
Precies dat hebben onderzoekers van het Amerikaanse Scripps-instituut gedaan. Ze slaagden er in bij hemofiele muizen de afweer tegen een toegediende stollingsfactor (factor VIII) uit te schakelen, terwijl het immuunsysteem overigens intact bleef. Bij hemofilie (bloederziekte) ontbreken bepaalde eiwitten (stollingsfactoren) die er voor moeten zorgen dat bij verwonding het bloed stolt. Hemofiliepatiënten krijgen die stollingsfactoren toegediend, maar bij zo’n 20 tot 30% maakt het afweersysteem die vreemde indringers weer onklaar.
De onderzoekers, onder aanvoering van James Paulson, maakten daarbij gebruik van de bijzondere kernmerken van de zogeheten B-cellen, die een belangrijke rol spelen in het afweermechanisme van ons lichaam. B-cellen, behorend tot de witte bloedlichaampjes of lymfocyten, zijn er in vele soorten en maten. Zo’n gespecialiseerde cel reageert op een heel specifiek antigeen (elke stof die een afweerreactie oproept) en zorgt er vervolgens voor dat het antilichaam wordt aangemaakt dat het antigeen onschadelijk maakt. Daarnaast bezit zo’n B-cel een receptor die in de aanwezigheid van een bepaald molecuul er voor zorgt dat de B-cel sterft. Dat alles is bedoeld om er voor te zorgen dat het afweersysteem maat houdt.
Van die laatste mogelijkheid hebben de TRSI-onderzoekers gebruik gemaakt. De stof die de celdood in gang zet bij die specifieke factor VIII-B-cellen is glycan, een soort suiker. Dat gebeurt wanneer glycan koppelt aan de receptor (CD22 in het plaatje). Door de hemofiele muizen nu nanodeeltjes toe te dienen waarin zowel glycan als de stollingsfactor VIII zitten, bleken ze die factor VIII-B-cellen uit te schakelen die zich anders tegen de vreemde stof zou hebben gekeerd. De toediening van de nanodeeltjes zorgde er ook voor dat het effect (het niet afstoten van factor VIII) maanden aanhield en mogelijk permanent zou kunnen worden.
Deze, wat genoemd wordt, liposomale nanodeeltjes zijn, voor andere toepassingen, al goedgekeurde door het Amerikaanse geneesmiddelenagentschap FDA, zodat klinische proeven bij mensen wat minder problematisch zullen zijn dan zonder die goedkeuring. De onderzoeksgroep gaat nu uitzoeken of deze techniek ook kan worden gebruikt bij transplantaties of bij autoimmuunziektes als multiple sclerose. “We weten dat die zaken ingewikkeld zijn, maar onze techniek zou, in combinatie met anderen, kunnen helpen.”, zei Paulson.

Bron: Science Daily (plaatje uit artikel in J.Clin.Inv.)

Gericht gaatjes prikken in cellen

Injecteren van een kleurstof in de cel met behulp van nanoelektroporatie. Uit Nano Letters. Copyright 2013 American Chemical Society.
Injecteren van een kleurstof in de cel met behulp van nanoelektroporatie (Nano Letters, copyright 2013 ACS.

Voor onderzoek aan cellen is het vaak nodig gaatjes in cellen te prikken waardoor de onderzoeker allerlei moleculen de cel in kan ‘smokkelen’. Dat prikken van gaatjes, dat gaat met behulp van elektrische ontladingen, gebeurt echter nogal willekeurig en de celsterfte is groot omdat alle cellen aan die wat genoemd wordt elektrop(erf)oratie worden blootgesteld. Aan de Amerikaanse Northwestern-universiteit is een veel verfijndere techniek ontwikkeld die de gaatjes in één bepaalde (deel van de) cel maakt, de nanoelektroporatie. Daardoor zijn onderzoekers in staat zeer nauwkeurig te regelen wanneer hoeveel van een bepaalde stof in de cel terechtkomt. “Daarmee”, zegt onderzoeker Horacio Espinosa, “kun je veel beter onderzoek doen naar de effecten van doseringen van verschillende medicijnen met als uiteindelijk doel de gepersonifieerde behandeling.”
Het feitelijke apparaatje, is een microchip met tipjes (zoals de punt van een atoomkrachtmicroscoop), waardoor microkanaaltjes lopen. Via die kanaaltjes wordt de beoogde stof in de cel gebracht. Het chipje kan worden gemanipuleerd door een micromanipulator of door die atoomkrachtmiscroscoop. Het hele proces van perforeren en injecteren kan in de gaten worden gehouden door een optische microscoop. De techniek, aangeduid met het letterwoord NFP-E, blijkt betrouwbaar en flexibel, zo zeggen de onderzoekers. Er kan van alles mee in een cel gebracht worden: eiwitten, polysacchariden (suikers), stukjes DNA en plasmiden.

Bron: ScienceDaily

 

Synbio in de lift (naar boven)

Synbiologie onderzoek groeit sterk Er is op het gebied van de synthetische biologie sinds 2009 steeds meer bedrijvigheid gekomen, zo meldt synbioproject.org. Dat geldt zowel voor bedrijven als voor onderzoeksinstellingen. Op de stek van synbioproject is een kaart te vinden, waar de synbiologie-activiteiten zich concentreren.
Amerika staat met activteit’haarden’ in Californië en Massachusetts bovenaan, maar Europa (vooral het VK en Duitsland) en ook Oost-Azië (China en Japan) slaan geen gek figuur. Een deel van de nieuwe activiteit heeft te maken met de voortdurende overheidsfinanciering van onderzoek. Daarnaast spelen de snel dalende kosten voor het sequentiëren van DNA een belangrijke rol, waardoor het onderzoek effectiever wordt (minder gis & mis).
Het aantal bedrijven dat zich zegt bezig te houden met synbio-onderzoek zou sedert 2009 zijn verdrievoudigd, waarbij het merendeel zich toelegt op speciale biochemicaliën, brandstoffen en geneesmiddelen. Opvallend is dat het aantal synbiobedrijven in Europa sterker is gestegen dan in de VS. Van de bedrijven die al in 2009 actief waren in synbiologie, verdwenen er zes ‘van de radar’ door overnamen of sluiting. Dat geldt ook voor 11 bedrijven die sedertdien actief werden op dit terrein.

Bron: ScienceDaily

Mens gaat ten onder aan eigen technologie (?)

Mensen denken niet erg na over het verdwijnen van de soort (mens dus). Er verschijnen meer artikelen, bij wijze van spreken, over het kweken van lobelia’s dan over het verdwijnen van de mensheid, terwijl we weten dat de Homo Sapiens slechts sedert een, geologisch gesproken, korte wijle op deze aardbol vertoeft. In Oxford is een heus instituut dat zich bezighoudt met de Toekomst van de Mensheid waar ze uiteraard over dit soort zaken nadenken. Nick Bostrom, directeur van het instituut en van Zweedse origine, kleurt de situatie wat heftig in, zo valt bij de BBC te lezen. “Als we er naast zitten, dan kan dit de laatste eeuw van de mensheid zijn.” In de rest van het artikel preluderen diverse sprekers op het mogelijke, nadere einde van de mensheid, maar maken op geen enkele wijze duidelijk hoe dat er dan zou kunnen uitzien. Opgevroten door zelf gecreëerde bacteriën? Aangevallen door hoogintelligente robots? Vermoord door dolgedraaide beursprogramma’s?
De mensheid zal niet zo gauw sterven door pandemieën of natuurrampen, denken ze in Oxford. Ook kernoorlogen, hoe verschrikkelijk ook, zullen niet het einde van de mens als soort betekenen, denkt Bostrom, maar we hebben nu technologische mogelijkheden die een bedreiging vormen voor het voortbestaan van de mensheid zoals niet eerder voorgekomen.
Die vooruitgang heeft ons het stuur uit handen geslagen, vindt de Zweed. Hij heeft het dan over ontwikkelingen op gebieden als nanotechnologie, synthetische biologie en kunstmatige intelligentie. Synbiologie belooft vooruitgang op medisch terrein, maar wat de risico’s zijn bij het ‘oprekken’ van het leven, valt niet te voorzien. Dat geldt ook, mutatis mutandis, voor nanotechnologie en kunstmatige intelligentie, denkt Bostrom.
Seán O’Heigeartaigh, een geneticus bij het instituut, trekt een vergelijking met de programma’s die in aandelenbeurzen worden gebruikt. Die kunnen directe en verwoestende gevolgen hebben voor de echte economie en echte mensen. Het kan allemaal gebeuren met de beste bedoelingen. “Het is niet waarschijnlijk dat iemand met opzet iets schadelijks maakt, maar er is altijd een risico dat iets in een andere omgeving wel schadelijk wordt. We ontwikkelen zaken die goed fout kunnen gaan. Met zulke krachtige technologie moeten we goed beseffen wat we weten, maar vooral wat we niet weten.” Hij heeft dus wel vertrouwen in de mensheid. Of dat terecht is is nog maar de vraag. De Ier zegt geen paniek te willen zaaien, maar te willen wijzen op de risico’s van wat we doen.
Het wordt allemaal nog ingewikkelder en onoverzichtelijker als we kijken naar ontwikkelingen op het snijvlak van die drie genoemde technologieën: wat als nanotechnologie, synbiologie en kunstmatige intelligentie bij elkaar komen? Daniel Dewey, vroeger werkzaam bij Google, stelt dat de explosie van (kunstmatige) intelligentie, de computers steeds minder voorspelbaar en minder beheersbaar heeft gemaakt. “Met die technologieën kunnen kettingreacties ontstaan, waarbij je uitgaande van heel weinig bronnen iedereen op de wereld kunt treffen.”
Ook de universiteit van Cambridge wil men een studie opzetten naar toekomst van de mensheid. Engelands Koninklijke Sterrenkundige Martin Rees, een eretitel, steunt de plannen meer onderzoek te doen en daartoe een apart instituut op te richten. “Mensen maken zich druk om individuele risico’s, maar hebben moeite grote gevaren te herkennen.” Rees gaat in het BBC-verhaal vooral in op de gevaren van synbiologie. “De ontwikkeling van nieuwe organismen voor landbouw en geneesmiddelen kunnen onverwachte bijeffecten hebben. Onze wereld is meer verbonden dan ooit. Nieuws en geruchten verspreiden zich razendsnel. Daarom zullen de gevolgen van een fout of van terreur groter zijn dan in het verleden.”
Voor Bostrom zit het probleem in het gat tussen wat we kunnen en wat we begrijpen. “Wij hebben het verantwoordelijkheidsgevoel van een kind, terwijl we technologisch de mogelijkheden van volwassenen hebben.” Met andere woorden: we zien het gevaar niet. We staan voor grote veranderingen. Dat kan volgens Bostrom eindigen in een katastrofe of een grotere greep op de biologie dan we nu hebben.

Bron: BBC

EIndelijk: artimisinine op de markt

Dit is beslist geen persstoppend artikel en het heeft nog knap lang geduurd: eindelijk nadat dat al jaren geleden was aangekondigd, zal er nu artimisinine op de commerciële markt worden gebracht, dat, met enige goede wil, het eerste echte biosynproduct zou kunnen worden genoemd. Twaalf jaar nadat Jay Keasling van de universiteit van Californië genen van een zomeralsem en een gist in het DNA van een bacterie had ingevoegd om een voorproduct van het malariamedicijn artimisinine te synthetiseren, kondigt het bedrijf Sanofi aan dat proces ook op industriële schaal in te gaan zetten. Daarvoor gebruikt het bedrijf overigens een gemodificeerd gist. Jay Keasling
De zomeralsem is de natuurlijke bron van het voorproduct van dit al in het oude China bekende geneesmiddel. Keasling, tegenwoordig ook onderdirecteur biowetenschappen bij het Lawrence Berkeley-lab, zal met zijn collega’s in Nature de sequentie van genen publiceren die zijn gebruikt om de gist als productieplaats voor het beoogde voorproduct te laten fungeren. Sanofi ontwikkelde een eigen fotochemisch proces om het voorproduct (artimisinezuur) om te zetten in artimisinine. Dat wordt vervolgens weer omgezet in het artesunaat en gemengd met een ander malariamedicijn om resistentie te voorkomen, de zogeheten ArtimisinineCombinatieTherapie (ACT). De eerste productiecapaciteit zal zo’n 35 ton bedragen. Het is de bedoeling dat die capaciteit in 2014 zal worden opgeschroefd naar 50 tot 60 ton, goed voor 80 tot 150 miljoen ACT-behandelingen. Jaarlijks sterven er wereldwijd zo’n 650 000 mensen aan de moerasziekte, vooral kinderen. Het aantal malarialijders loopt in de honderden miljoenen.
Bron: Eurekalert

Wien onderzeeërs door den ad’ren stroomt

In een film uit 1966 (Fantastic voyage) schijnt het al voorspeld te zijn: robotjes of onderzeeërs die onze aderen en andere lichamelijke transportbanen als vaarwegen gebruiken. Een in het bloed ingespoten onderzeeërtje moest in de film een bloedstolling in de hersens verwijderen. Dergelijke kleine systemen, we praten dan over dimensies van duizendste of zelfs miljoenste van een millimeter, kunnen gemaakt worden, maar de aandrijving daarvan was altijd een probleem, zo viel te beluisteren tijdens een lezing op het 245ste jaarcongres van de Amerikaanse vereniging van chemici (ACS).
Micromotor aangedreven door waterstof
Joseph Wang van de universiteit van Californië vertelde zijn gehoor dat die barrière nu is geslecht. “We hebben voor het eerst micromotors en microraketjes gemaakt die de natuurlijke omgeving gebruiken als brandstofbron. Zo is de maag sterk zuur om het voedsel te verteren, maar je kunt dat zuur ook gebruiken als brandstof. Je produceert dan waterstof dat zorgt voor de voortstuwing. Gebruik maken van biocompatibele brandstoffen zorgt er voor dat gezond weefsel niet beschadigd wordt.” Wang ziet echter ook mogelijkheden voor die micro-apparaatjes op volstrekt ander terrein zoals het opruimen van olievlekken, het in de gaten houden van industriële processen of van de nationale veiligheid.
Zijn leerling Wei Gao beschreef twee zelfaangedreven microraketjes/-motors. Een buisvormige micromotor van zink, beweegt zich razendsnel (100 x zijn lengte van eenhonderdste mm per seconde). De voortbeweging komt van de bij de reactie van zink en het maagzuur ontstane waterstofbelletjes. Volgens Gao zou het ‘raketje’ ideaal zijn voor het afleveren van medicijnen of het wegsnijden van aangetaste cellen. Met een ook in het lab ontwikkelde aluminium micromotor, die water als ‘brandstof’ gebruikt, zou microchirurgie kunnen worden uitgevoerd. De drijvende kracht is, weer, waterstof. Het aluminium reageert met water en er ontstaat waterstof. Normaal gesproken biedt de ondoordringbare oxidelaag, die daarbij op het aluminium ontstaat, bescherming tegen verdere aantasting, maar door aluminium te legeren met gallium ontstaat er een brosse structuur die er voor zorgt dat aluminium en water ‘bij elkaar’ kunnen blijven komen waardoor de reactie op gang blijft. De aluminium micromotor zou ook dienst kunnen doen in milieu- en veiligheidstoepassingen, aldus Gao. “Voor het eerst hebben we micromotors die met drie verschillende brandstoffen kunnen werken: met zuren, met basen en met waterstofperoxide, afhankelijk van de omgeving waarin ze gebruikt worden.”
Er wordt gewerkt aan de verlenging van de levensduur van de microvaartuigjes en aan de aanpassing voor specifieke biomedische toepassingen. De onderzoekers zijn ook op zoek naar commerciële partners voor toepassingen in het echte leven.

Bron: Eurekalert; foto van blogs.discovery.com

Omnimedicijn tegen foute cellen?

dr. Beth Levine van de universiteit van TexasHet is natuurlijk al vaker vertoond, onderzoekers die hoop geven op een doorbraak in de bestrijding van kanker en en passant ook maar meteen van die ziekte van Alzheimer en andere hersenaandoeningen, maar het moet er eens van komen. Medewerkers van het centrum van autofagie-onderzoek van de universiteit van Texas in Dallas, hebben een eiwitachtige verbinding gesynthetiseerd die de potentie schijnt te hebben bij het aanschakelen van een proces in cellen dat autofagie wordt genoemd. Bij dat proces worden defecte of onnodige celdelen afgebroken tot de basisbouwstenen voor de aanmaak van nieuwe biomoleculen, maar autofagie dient ook om binnengedrongen, virussen, bacteriën of lichaamsvreemde eiwitten onschadelijk te maken door ze af te breken. Met dat laatste vervult autofagie een functie in ons afweersysteem.
Wanneer dat proces ‘regelbaar’ is met behulp van een eenvoudige peptide, dan zou je daarmee greep krijgen op tot nu toe ongrijpbare processen als kanker en Alzheimer. Het gesynthetiseerde peptide, dat ‘luistert’ naar de naam Tat-becline 1, zou zijn werking bewezen hebben in proeven met muizen. Met Tat-becline 1 behandelde muizen bleken ongevoelig te zijn voor het Westnijl- en chikungunya-virus, door muggen overgebrachte ziekteverwekkers. Menselijke cellen die met dit dit peptide werden behandeld bleken bestand tegen hiv. Directeur van het centrum dr. Beth Levine verwacht dat door de grote rol die autofagie speelt in het afweersysteem, stoffen die dat proces in werking stellen een grote potentie hebben in het voorkomen en de bestrijding van een breed scala aan ziektes.
De door het centrum gesynthetiseerde peptide is ‘afgeleid’ van becline 1, een van de eerste peptiden die is gevonden, die een rol speelt bij autofagie in zoogdiercellen.

Bron: http://www.utsouthwestern.edu/newsroom/news-releases/year-2013/feb/peptide-levine.html