Van eenvijfde van onze genen is onbekend waarvoor ze dienen

DNAHet genoom van de mens zou in 2003 helemaal zijn uitgespeld, waarmee de blauwdruk van ons leven zou zijn geopenbaard, maar twintig jaar later weten we nog altijd van eenvijfde van de rond 20 000 genen niet waar ze voor dienen. Bovendien is van een groot deel van ons genoom, zo’n 95%, troep-DNA, waarvan niet (goed0 bekend is wat dat doet. Nu blijkt dat die troep zo nutteloos niet is. Onderzoekers noemen troep-DNA nu het onnoom (eigenlijk unknome). Hoe meer het genoom bestudeerd wordt hoe minder je ervan lijkt te kunnen begrijpen. Lees verder

Eindelijk: na ruim 30 jaar genoom mens volledig ‘uitgelezen’

Uitlezing chromosomen mens

De chromosomen van de mens. De rode stukken waren de ‘witte plekken’ (afb: Science)

Het menselijk-genoomproject werd in 2003 ‘afgesloten’. In dik tien jaar waren onderzoekers er in geslaagd het DNA van mensen uit te lezen. Zo’n beetje, dan, want nu nog eens twintig jaar later is het menselijk genoom volledig uitgelezen (overigens vraag ik me dan altijd af wel genoom?; as). Het zou dan vooral gaan om stukken DNA die ‘verraden’ hoe dat enorme molecuul werkt. Lees verder

De ’troep’ van DNA is niet gewoon maar rotzooi

DNAHet DNA-molecuul is, uitgerekt, zo’n 2 m lang, voor een molecuul gigantisch. Slechts rond 2% van dat immense molecuul codeert voor eiwitten. De rest werd ooit beschouwd als ’troep’ (in het Engels ‘junk’). Van dat idee zijn de wetenschappers onderhand wel af, want zeker een deel van die 98% is wezenlijk voor het leven. Langzamerhand krijgen genomici steeds meer zicht op wat de troep voorstelt. Dat geeft een hoop discussie… Lees verder

Genen kunnen ook ‘uit het niks’ komen

Kabeljauw heeft 'antivriesgen'

Kabeljauw heeft een de novo-‘antivriesgen’ (afb: WikiMedia Commons)

Lang is gedacht dat nieuwe genen varianten van oude genen zijn, maar het wordt steeds duidelijker dat de natuur veel vindingrijker is dan dat. Genen kunnen ook zo maar ‘uit het niks’ ontstaan, uit stukken en brokken niet-coderend DNA. Lees verder

Puntmutatie in duister-DNA zou kanker veroorzaken (?)

Kankerspecialist Lincoln Stein

Lincoln Stein (afb: OICR)

Onderzoekers in Canada denken te weten dat een puntmutatie in het troep-DNA, schijnt tegenwoordig duister-DNA genoemd te worden, kanker zou kunnen veroorzaken. Die mutatie zou iets hebben te maken met de vorming van boodschapper-RNA bij het afschrijven het genoom. Ik vraag me, als oprechte leek op elk terrein, af hoe serieus die ontdekking is. Het zou gaan om diverse typen kanker. De onderzoekers hebben het dan meteen heel optimistisch over een nieuwe manier om kanker aan te pakken…. Hoe dan ook, deze ontdekking lijkt te illustreren hoe weinig we nog van deze materie weten. Lees verder

Bacteriën maken nieuwe genen uit ’troep-DNA’

Ontstaan nieuwe genen in E. coli's

Nieuwe genen onstaan bij E. coli-bacteriën uit willekeurige sequenties in het ‘niet-coderende’ DNA. In het ringvormige DNA van de bacterie plaatsten onderzoeker een halfmiljard willekeurige stukjes DNA (afb: univ. van Uppsala)

Een van de (vele) vragen die ontwikkelingsbiologen zich stellen is hoe nieuwe genen ontstaan. Onderzoekers in Zweden denken nu te weten hoe dat bij bacteriën werkt. Die neiuwe genen kunnen worden gevormd uit DNA-sequenties die functieloos zouden zijn, ooit junk(=troep)-DNA genoemd. Lees verder

‘Troep’ in DNA zou schimmels helpen overleven

Gistcellen

Gistcellen (afb: Science)

Zoals bekend is het overgrote deel (98%) van DNA ’troep’, ‘rotzooi’. Zo werd het aanvankelijk aangeduid, omdat dat niet-coderende DNA, zoals het tegenwoordig wat netter heet, niet codeert voor eiwitten. Nu denken onderzoekers gevonden te hebben dat bepaalde niet-coderende delen van een gen, de introns (onderbrekende stukjes), de cellen helpen te overleven in zware tijden. Bij gistcellen althans. Lees verder

‘Troep-DNA’ houdt ons genoom bij elkaar

Niet-coderend DNA

Niet-coderend DNA is niet bepaald nutteloos

Ooit werd het troep (‘junk’) genoemd, dat deel van het menselijk DNA dat niet codeert voor eiwitten (zo’n 98%), maar zo langzamerhand komen wetenschappers er achter dat het allemaal wat ingewikkelder in elkaar zit. Nu denken onderzoekers van de universiteit van Michigan (VS) ontdekt te hebben dat die ’troep’ een belangrijke functie heeft in het bij elkaar houden van het genoom. Onder andere, voeg ik daar dan op eigen ‘gezag’ aan toe. Lees verder

Niet-coderend RNA best belangrijk

lang niet-coderend RNA-molecuul belangrijk voor hartcelontwikkeling

Het lncRNA-molecuul Braveheart haalt de blokkade (CNBP) voor de ontwikkeling van de hartspiercel weg (afb: Molecular Cell)

Een aantal jaren geleden werden RNA-moleculen ontdekt die niet coderen voor eiwitten  (en daar ook niks mee van doen hebben). Dat lange niet-coderende RNA (lncRNA) was een kopie van delen van het genloze deel DNA, eerder als troep beschouwd. LncRNA speelt een rol in allerlei processen in de cel, zoals het bepalen van het type waarin embryonale cellen zich ontwikkelen. Onderzoekers van het MIT in Cambridge (VS) hebben nu uitgezocht hoe een van die moleculen te werk gaat. De structuur van die lncRNA-moleculen is bepalend voor hun functie, zo bleek, dus net zoals bij de eiwitten. Lees verder

Nieuwe manier om ’troep-DNA’ interpreteren

De wisselwerking tussen versterkers (enhancers) en genen

Zo ongeveer koppelen versterkers (2) aan het te activeren gen (3). Het enzym RNA-polymerase (7) zorgt voor het kopiëren van het gen in boodschapper-RNA (afb: Wiki Commons)

Maar een klein deel van DNA codeert voor eiwitten, de rest is troep (junk) dacht men ooit. Dat blijkt inmiddels niet waar te zijn, maar hoe dat nu wel in elkaar steekt is nog verre van duidelijk. Onderzoekers van de Gladstone-instituten in San Fransisco (VS) hebben een techniek bedacht, TargetFinder gedoopt, om dat zogenaamde ’troep-DNA’ van het menselijke genoom te kunnen interpreteren in de hoop en verwachting dat dat iets oplevert om tot nu toe moeilijke geneesbare ziektes te kunnen behandelen.
Lees verder