Bacteriofagen mogelijk opvolgers van antibiotica

Staphylococcus aureus

Staphylococcus aureus (afb: WikiMedia Commons)

Eigenlijk is het lood om oud ijzer: bacteriofagen of antibiotica. Beide ‘verslinden’ bacteriën, met dat verschil dat bacteriofagen wat kieskeuriger zijn. Ze werken alleen bij een bepaalde bacterie terwijl zogeheten breedspectrum-antibiotica grote delen van het bacteriële leven verdelgen. Groot nadeel van antibiotica is dat bacteriën er immuun voor kunnen worden. Dan kan veel moeilijker met fagen. Dat zijn virussen. Nu steeds meer antibiotica onwerkzaam zijn bij steeds meer bacterisoorten zijn de fagen misschien een alternatief. Twee patiënten in Frankrijk met chronische gewrichtsontstekingen zijn daar dankzij de fagen vanaf. Lees verder

‘Therapeutische darmbacteriën’ helpen ziektes bestrijden

Darmbacterie Escherichia coli (E. coli)

Darmbacterie Escherichia coli (E. coli)

Onderzoekers hebben een manier ontwikkeld om darmbacteriën genetisch zo te veranderen dat ze verbindingen produceren met therapeutische eigenschappen. Zo zou de ‘communicatie’ tussen (veranderde) darmbacteriën en (zieke) cellen kunnen worden gebruikt als nieuwe geneeswijze van stofwisselingsaandoeningen. Lees verder

Kunstmatige cellen met celskelet gemaakt

DNA-celskelet in een kunstmatige cel/vetbolletje/liposoom

Het celskelet (groen) in dit vetbolletje bestaat uit vernet DNA (afb: PNAS)

Kunstmatige cellen kun je zelf maken. Vetbolletjes in water en klaar ben je. Daarmee ben je nog niet in de buurt van echte cellen. Die hebben, om maar wat te noemen, een celskelet, die de cel stevigheid geeft en ook nog eens een rol spelen bij de celdeling. Die zijn al wat lastiger te maken. Het schijnt dat onderzoekers van de landbouw- en technische universiteit in Tokio nu kunstmatige cellen hebben gemaakt, voorzien van een celskelet. Op naar de volledig gesynthetiseerde cel? Nog (lang) niet, maar wel naar gerichte medicijn afgifte, bijvoorbeeld.
Lees verder

LASSO ‘kloont’ duizenden nucleotiden in een keer

LASSO kloont grote brokken DNA

Met LASSO zouden grotere stukken van het genoom kunnen worden ‘gekloond’ dan tot nu toe mogelijk was (afb: Jennifer E. Fairman/Johns Hopkinsuniversiteit

Systematisch onderzoek doen naar wat welk eiwit en of gen doet is vast niet het leukste onderzoek wat je kunt doen, maar zeer nuttig voor het doorgronden van hoe dat complexe systeem leven in elkaar steekt. Het schijnt dat onderzoekers tot nu toe dat uitzochten door gen voor gen te ‘klonen’ en te  bekijken. Medeonderzoekers van de Johns Hopkinsuniversiteit en van de universiteit van Harvard hebben nu een systeem bedacht om duizenden nucelotiden tegelijkertijd te klonen om bibliotheken mee op te bouwen met de therapeutische waarde van de gevonden eiwitten. Lees verder

Nieuwe taal voor genetische code op komst

Gehercodeerd bacterie-DNA

5% van het bacteriegenoom is ontdaan van twee ‘overbodige’ codons (afb: Wyss-instituut)

Drie DNA-bases, een triplet, coderen voor een van de twintig aminozuren waaruit een eiwit bestaat. Er zijn vier DNA-bases: C, G, T en A. Dat betekent dat je 64 verschillende tripletten hebt. Dat is te veel. Een groep onderzoekers van, onder meer, het Amerikaanse Wyss-instituut hebben de code van 5% het genoom van een Salmonella-bacerie zo veranderd, dat er twee ‘overbodige’ tripletten uit 5% van het DNA werden gehaald, werden ‘vrijgemaakt’, voor andere aminozuren. Bovendien zou die nieuwe genetische ’taal’ er voor zorgen dat de nieuwe levensvorm zich niet mengt met het natuurlijke leven, is het idee.  Nu de rest nog en hopen dat het beestje dan nog in leven blijft. Lees verder

Grote eiwitten hebben kleine helpers om in vorm te komen

Antibioticum trimethoprim

Trimethoprim oftewel 2,4-diamino-5-(3,4,5-trimethoxybenzyl) pyrimidine

Eiwitten, het moge de lezers van dit blog bekend zijn, zijn de werkpaarden van je lijf. Er zijn duizenden eiwitten. Een cruciaal aspect van een naar behoren functionerend eiwit is zijn vorm. Als het eiwit niet de juiste ruimtelijke structuur heeft dan gaat het fout. Dat gebeurt, bijvoorbeeld, bij ziektes als Parkinson en Alzheimer.  Een promovendus aan de universiteit van Massachusetts ontdekte dat bij E- coli-bacteriën een klein molecuul (trimethoprim) een slecht gevouwen eiwit (dihydrofolaatreductase) in de juiste vorm bracht. Grote eiwitten, zoals enzymen, hebben kleine helpers (nodig) om in vorm te komen. Nu hebben onderzoekers van die universiteit een wiskundige onderbouwing kunnen geven van de rol van die kleine helpers. Lees verder

Zijn proefdieren te vervangen door miniorganen-op-chip?

De minihersens van Hoffman-Kim

De minihersens van Hoffman-Kim

Twee jaar geleden kweekte Diana Hoffman-Kim haar eerste hersenbolletjes, piepkleine miniorgaantjes van hersencellen van muizen. Sedertdien heeft ze duizenden minihersentjes gekweekt die vol elektrisch leven zitten. Echt leven doen ze niet. Om zelfstandig zonder de hulp van labmedewerkers te kunnen bestaan hebben ze bloed nodig. Vorig jaar zagen studenten van Hoffman-Kim dat er in de minihersentjes spontaan bloedvaten onstonden. Dat was nog nooit waargenomen. Ze werkt nu aan de Amerikaanse Brown-universiteit met een collega aan miniorgaantjes op chip, voorziening van een kunstmatig ‘bloedvoorziening’, die bij, onder meer, medicijnonderzoek proefdieren zouden kunnen vervangen, denkt ze. Lees verder

TransferRNA ‘leert’ cellen mutaties te negeren

Een transferRNA-molecuul

De globale structuur van een tRNA-molecuul (afb: slideshare.net)

Mutaties in genen kunnen leiden tot ziektes. Zo kan door een mutatie een stopcodon op een verkeerde plaats ontstaan. Een stopcodon is een DNA-sequentie die de ‘eiwitmachine’ (het ribosoom) vertelt dat de aanmaak van eiwitten daar moet stoppen. Zo kan het oorspronkelijke eiwit van 100 aminozuren door dat stopcodon worden ingekort tot een nutteloze reeks van 15 aminozuren. Dat schijnen ‘onzinmutaties’ te worden genoemd. Het blijkt mogelijk dat foute stopcodon te ontmaskeren met kunstmatige transferRNA-moleculen. Lees verder

Het lukt al een beetje, kunstcellen maken

Het lijkt er op dat onderzoekers er steeds beter in slagen cellen te maken die op echte cellen lijken. Die namaakcellen zouden dan allerlei klusjes in het lijf kunnen doen zoals het afleveren van medicinale stoffen of dienstdoen als sensoren. De onderzoekers gebruikten enzymen om de kunstcellen te laten bewegen als echte. Lees verder