Insectenpopulaties verweren zich tegen gendruk

Meelkever of -tor

Een meelkeversoort (afb: WIki Commons)

Insecten schijnen middelen te bezitten om genetisch methoden te dwarsbomen, die zijn bedoeld als bestrijdingsmiddel. Onderzoekers van de universiteit van Indiana, die tot die conclusie kwamen, betwijfelen of het mogelijk is via genbewerking en gendruk door insecten verspreide ziektes zoals malaria te voorkomen. Lees verder

Kunstgenen maken (heel soms) functionele eiwitten

Darmbacterie Escherichia coli (E. coli)

Darmbacterie Escherichia coli (E. coli)

Dat is toch een beetje het wezen van synthetische (kunstmatige) biologie: de natuur naar je hand zetten ter meerdere eer en glorie en nut van jezelf. Met al die mooie gereedschappen in de CRISPR-gereedschapskist kun je zelf onnatuurlijke eiwitten bouwen, van de natuurlijke aminozuren waar eiwitten uit bestaan, maar ook van de vele aminozuren die de natuur niet gebruikt. Soms blijken die eiwitfrutsels nog te werken ook, ontdekte Michael Hecht van de universiteit van Princeton. Lees verder

Muizen via genoombewerking afgeholpen van hiv-1 (?)

Hi-virussen op een T-cel

Hi-virussen (paars) op een T-cel

Het humane immunodeficiëntievirus (hiv) weet zich in het mensenlijf goed te verbergen en mede daardoor moeilijk finaal uit te roeien. Nu schijnen onderzoekers in Amerika er in geslaagd te zijn met behulp van CRISPR/Cas9-methode het virale DNA uit het celgenoom van levende dieren te snijden. Dat zouden ze hebben gedaan in drie, wat dan heet, ‘muismodellen’, waarvan een op die van een mens zou lijken (?). Dat lukt grotendeels, maar niet voor 100%.  Lees verder

Manipulatie-embryo’s vragen om regels

Uit stamcellen ontwikkelde muisembryo's

Links het uit stamcellen ontwikkelde muisembryo (rood) na 48 uur, rechts een ‘normaal’ embryo na 96 uur. Blauwgekleurde cellen vormen het buitenembryonale weefsel (afb: univ. van Cambridge)

Sinds de opkomst van de CRISPR-techniek is het bewerken van het genoom een stuk makkelijker en effectiever geworden. De laatste tijd zijn er diverse onderzoeks-groepen die hebben geknutseld aan het genoom van menselijke embryocellen. In Amerika is een discussie op gang gekomen in wetenschappelijke kring of we moeten toelaten dat er aan menselijke embryo’s gesleuteld wordt. Ook de Nederlandse gezondheidsraad is voorstander, het thema behoeft echter regelgeving, maar vooral ook debat. Interesseert het thema ons niet (meer)? Lees verder

Wordt CRISPR/Cpf1 de nieuwe CRISPR/Cas9?

Cas9-knipschaar in vergelijking met de Cpf1-knipschaar

Cas9-knipschaar in vergelijking met de Cpf1-knipschaar

Als het om het bewerken van het genoom gaat heeft de CRISPR/Caas9-methode zich inmiddels wel bewezen als betrouwbare genschaar. Het lijkt er op dat er inmiddels een opvolger in de coulissen staat: CRISPR/Cpf1. Cpf1 is veel kleiner dan Cas9 en makkelijker de cel in te loodsen en kan op plaatsen komen waar Cas9 niet kan komen.  Eric Olson en medewerkers van de universiteit van Texas heeft aannemelijk gemaakt dat die techniek effectief is  bij het bestrijden van de ziekte van Duchenne, een erfelijke spieraandoening.  Lees verder

Uitschakelen gen lijkt succesvol tegen ALS en SCA2 (bij muisjes)

ALS-onderzoeker Stefan Pulst

ALS-onderzoeker Stefan Pulst

Het uitschakelen van het ataxine2-gen lijkt een middel dat succes zou kunnen hebben in de bestrijding van amyotrofe laterale sclerose (ALS) en van de minder bekende zenuwziekte spinocerebellaire ataxie type 2 (SCA2). Dat blijkt uit twee afzonderlijke onderzoeken, waarbij muizen als proefdieren werden gebruikt. De resultaten van beide onderzoeken zijn gepubliceerd in Nature.
Lees verder

Basevervangers blijken erg accurate genoombewerkers

Basevervangers erg accuraat

In de ‘gewone’ CRISPR/Cas9-techniek (boven) zorgt het gids-RNA (groen) dat het knip-en-plakwerk op de juiste plaats gebeurt. De Zuid-Koreanen hebben de ingrediënten ietwat aangepast voor de basevervanger: Cas9 werd nCas9 (nickase) en daaraan werd het enzym cytosinedeaminase geplakt. Daarmee werd de C vervangen door U (uracil) dat normaal niet in DNA voorkomt (maar wel in RNA), maar bij replicatie wordt vervangen door T (thymine)

Een DNA-streng van een mens is zo’n driemiljard nucleotiden (DNA-letters) lang. Toch schijnt de modernste versie van de vrij nieuwe CRISPR/Cas9-methode in staat om heel precies een zo’n DNA-bouwsteen te vervangen door een ander, constateerden onderzoekers rond Jin-soo Kim van de nationale universiteit in Seoel (Zuid-Korea). Kim: “Dit is voor het eerst dat de effectiviteit van deze basevervanger (een base is nucleotide; as) over het hele genoom is beoordeeld. ”
Lees verder

Hoe ‘programmeer’ je levende cellen?

Wilson Wong en zijn gereedschapskist voor genschakelingen

Wilson Wong

Hoe cellen zich gedragen heeft alles te maken met welke genen in welke mate actief zijn. Door aan de ‘knoppen’ te draaien die de genexpressie sturen kun je een cel (her)programmeren. Onderzoekers in de VS rond Wilson Wong zouden nu een vereenvoudigde methode gevonden hebben om met behulp van knip-en-plak-enzymen (recombinases) zoogdiercellen snel en efficiënt om te zetten in wat synbiologen ‘genschakelingen’ of ‘gencircuits’ noemen. De analogie met elektronica is niet toevallig. Lees verder

Gezondheidsraad: “Legaliseer genoombewerking embryo’s”

Een menselijke embryo met acht cellen

Een menselijke embryo

De Nederlandse gezondheidsraad en de Commissie genetische modificatie (Cogem)  vinden dat het bewerken van embryogenoom en het kweken van embryo’s zouden moeten worden gelegaliseerd. Dat zou in eerste instantie voor onderzoeksdoeleinden zijn, maar op termijn ook voor klinische toepassingen. Dat schrijven beide organisatie in een advies aan minister Schippers van volksgezondheid. Lees verder

Zoogdiercellen gebruikt voor ‘DNA-computer’

DNA-recombinase

DNA-recombinases herkennen ‘hun’ stukje DNA, knippen dat er uit en hechten de ‘wond’ weer

DNA intrigeert, ook de computerbouwers zijn geïnteresseerd. DNA zou het perfecte materiaal zijn om langdurig veel gegevens op te slaan, maar met DNA zou ook te rekenen zijn. Nu schijnen onderzoekers zoogdiercellen genetisch te hebben aangepast met als doel het DNA complexe taken te laten uitvoeren. Let wel: die uiterst competente ‘DNA-computer’ is er nog niet. Hun ‘DNA-computer’ kan wel Booleaanse operaties uitvoeren, maar ze denken hun nieuwe programmeringstechnieken toch vooral te gebruiken voor de verbetering van behandelmethoden: van kankertherapieën tot het aanmaken van nieuwe weefsel. Lees verder