Onderzoekers ontwikkelen ‘chemische’ DNA-microscoop

DNA-microscoop

Zo ziet een plaatsje van de DNA-microscoop er uit (afb: Joshua Weinstein et. al.)

Onderzoekers van het befaamde MIT in Cambridge (VS) hebben een ‘microscoop’ ontwikkeld waarbij niet met straling wordt gewerkt, maar met de chemische eigenschappen van biomoleculen. Met die DNA-‘microscoop’ kunnen ze cellen ‘met andere ogen’ bekijken. Lees verder

Combi-beeldtechniek ziet cellen in levende wezens

Het lijkt er op dat met allerlei vernuftige aanpassingen er microscopische technieken worden ontwikkeld die het celleven in volle werking in beeld kunnen brengen. Door twee beeldtechnieken te combineren zijn onderzoekers er in geslaagd het doen en laten van afweercellen in het middenoor van embryo’s van zebravisjes in volle actie vast te leggen in een filmpje. Lees verder

Aangepaste biobeeldtechniek maakt plaatjes van het echte leven

Fluorescentie/resonantiemicroscoop

Informatie uit een Rensselaermi(a?)croscoop (afb: Rensselaerinstituut)

Een nieuwe benadering van een optische techniek zou in staat zijn snel en goedkoop verschillende wisselwerkingen tussen moleculen in een groot stuk, levend weefsel in beeld te brengen. De techniek zou toepassingen kunnen hebben bij medische diagnoses, geleide chirurgie en medicijnonderzoek, denken de bedenkers. De techniek maakt het mogelijk tegelijkertijd zestien soorten informatie te volgen over een gebied van enkele cm2 en is in staat interacties te vangen die in eenmiljardste van seconden gebeuren, stellen ze.
Lees verder

Beeldtechniek EDICTS ‘ziet’ wat een stamcel wordt

De epigenetische verandering van stamcellen in beeld

Een plaatje om enig idee te krijgen hoe EDICTS in elkaar steekt (afb: Nature)

Ik dacht dat de omgeving bepaalde tot wat voor een type cel een stamcel zich ontwikkeld, maar onderzoeker Prabhas Moghe van de Amerikaanse Rutgersuniversiteit en zijn medeonderzoekers stellen dat stamcellen een ‘lot’ hebben. Met een hoogoplossende beeldtechniek zou dat ‘lot’ zichtbaar zijn te maken. Lees verder

Het DNA-molecuul geeft zich bloot bij STORM

STORM-microscoop

De STORM-techniek in vergelijking met een conventionele microscoop

Door gebruik te maken van een nieuwe hoogoplossende microscooptechniek, STORM, zijn onderzoekers van het CRG en ICFO in Barcelona er in geslaagd te zijn de precieze structuur van DNA zichtbaar te maken. De STORM-techniek werd samen toegepast de nodige wiskunde en simulaties. Daarmee kon het erfgoed op nanoschaal worden bekeken. De onderzoekers zagen dat de nucleosomen, een stukje DNA met de omringende histonen, zich groeperen tot onregelmatige groepen met daartussen stukken nucleosoomloos DNA die die groepen, scheiden. Lees verder

Een kijkje in de ‘chaos’ van een cel

De cel'chaos'

De gelabelde celonderdelen. Groen zijn de microtubuli, paars de mitochondriën, rood het Golgi-apparaat en geel de peroxisomen.

Met een lichtmicros-coop ben je beperkt door de kleinste golflengte van het zichtbare licht (de brekings- of diffractie-limiet). Die geeft de ondergrens aan van het oplossend vermogen van een lichtmicros-coop. Dat oplossend vermogen (resolutie) ligt op de helft van die golflengte (400 nm) en is, theoretisch, dus 200 nm (of je die resolutie haalt heeft ook iets met de gebruikte optiek te maken). Onderzoekers van het Wyss-instituut van de Harvard-universiteit hebben een truc bedacht om die ondergrens te doorbreken. Met behulp van stukjes DNA waaraan fluorescerende ‘vlaggen’ waren gehangen konden ze de fijne details in een cel laten zien met een resolutie van 10 nm. Lees verder

Automaat registreert activiteit genen in vele cellen tegelijk

Plaats trnascriptiemoleculen

Een plaatje van een aantal cellen met de relatieve positie van transcriptiemoleculen of -factoren in een cel ten opzichte van het celmemebraan (afb: Pelkmans-lab)

Aan de universiteit van Zürich (Zwitserland) is een methode ontwikkeld om de activiteit van afzonderlijke genen in een cel zichtbaar te maken. De methode schijnt zo succesvol te zijn, dat, voor het eerst, de activiteit van 1000 genen in tienduizend menselijke cellen tegelijkertijd is te volgen. Het blijkt dat de activiteit van de genen en de ruimtelijke organisatie van de ontstane transcriptiemoleculen of -factoren sterk wisselen per cel. Lees verder

Eiwitproductie in beeld gebracht

Eiwitproductie in hersencellen in beeld gebracht

Eiwitproductie in hersencellen in beeld gebracht

Met behulp van de zogeheten gestimuleerde Raman-spectroscopie zijn opnames gemaakt van de vorming van nieuwe eiwitten in levende hersencellen die in leven werden gehouden in een medium van aminozuren, waarvan waterstofatomen waren vervangen door zwaardere familieleden (deuteriumatomen). Eiwitten die uit deze ‘zware’ aminozuren ontstonden konden zichtbaar worden gemaakt bij een voor deuterium specifieke golflengte. De opname is gemaakt 20 uur nadat de hersencellen in een badje van ‘zware’ aminozuurmedium waren gelegd.

Bron: Science Daily (foto: Lu Wei, Columbia-universiteit)

 

Witte bloedlichaampjes in actie ‘gekiekt’

Witte bloedlichaampjes 'gefilmd'
Onderzoekers van de universiteit van Manchester van de vakgroep ontstekingsonderzoek van Daniel Davis hebben ‘gekiekt’ hoe witte bloedlichaampjes, belangrijke strijders in ons afweersysteem, virussen en kanker bestrijden. De plaatjes laten zien hoe die cellen de organisatie van hun oppervlaktemoleculen veranderen als die geactiveerd worden door eiwitten die afkomstig zijn van door virus of kanker aangetaste cellen. Die oppervlaktemoleculen (eiwitten) zijn niet gelijkelijk verdeeld over het oppervlak van de witte bloedcel. Davis: “Het verrassende voor ons is dat de celoppervlak zo sterk verandert.” Op de gemaakte plaatjes hebben de onderzoekers ook de organisatie van de cellen bestudeerd. Die blijken zich te groeperen. Davis: “We hebben bekeken hoe deze celklonten of oppervlakte-eiwitten veranderen als de cellen in killer-cellen veranderen. Dit geeft ons meer houvast bij de ontwikkeling van medicijnen.”
Tot nu maakten de beperkingen van de lichtmicroscopie het maken van dergelijke plaatjes niet mogelijk. Davis en zijn medewerkers gebruikten een fluorescentiemicroscoop met hoge oplossing om naar de cellen in bloedmonsters te kijken en hun plaatjes te schieten.

Bron: Science Daily

Gericht gaatjes prikken in cellen

Injecteren van een kleurstof in de cel met behulp van nanoelektroporatie. Uit Nano Letters. Copyright 2013 American Chemical Society.
Injecteren van een kleurstof in de cel met behulp van nanoelektroporatie (Nano Letters, copyright 2013 ACS.

Voor onderzoek aan cellen is het vaak nodig gaatjes in cellen te prikken waardoor de onderzoeker allerlei moleculen de cel in kan ‘smokkelen’. Dat prikken van gaatjes, dat gaat met behulp van elektrische ontladingen, gebeurt echter nogal willekeurig en de celsterfte is groot omdat alle cellen aan die wat genoemd wordt elektrop(erf)oratie worden blootgesteld. Aan de Amerikaanse Northwestern-universiteit is een veel verfijndere techniek ontwikkeld die de gaatjes in één bepaalde (deel van de) cel maakt, de nanoelektroporatie. Daardoor zijn onderzoekers in staat zeer nauwkeurig te regelen wanneer hoeveel van een bepaalde stof in de cel terechtkomt. “Daarmee”, zegt onderzoeker Horacio Espinosa, “kun je veel beter onderzoek doen naar de effecten van doseringen van verschillende medicijnen met als uiteindelijk doel de gepersonifieerde behandeling.”
Het feitelijke apparaatje, is een microchip met tipjes (zoals de punt van een atoomkrachtmicroscoop), waardoor microkanaaltjes lopen. Via die kanaaltjes wordt de beoogde stof in de cel gebracht. Het chipje kan worden gemanipuleerd door een micromanipulator of door die atoomkrachtmiscroscoop. Het hele proces van perforeren en injecteren kan in de gaten worden gehouden door een optische microscoop. De techniek, aangeduid met het letterwoord NFP-E, blijkt betrouwbaar en flexibel, zo zeggen de onderzoekers. Er kan van alles mee in een cel gebracht worden: eiwitten, polysacchariden (suikers), stukjes DNA en plasmiden.

Bron: ScienceDaily