Bepalen telomeren de (pluri)potentie van stamcellen?

Pluripotentiemechanisme

In normale pluripotente cellen (boven) wordt veel TRF1 aangemaakt. Het Polycombcomplex (PRC2, bestaand uit EDD, EZH2 en Suz12) is zwak gebonden aan het genoom en zijn de pluripotente genen actief. Als het TRF1-gen wordt uitgeschakeld (onder) verhoogt de aanmaak van TERRA’s en verandert de genexpressie. K27me3 is een epigentisch kenmerk.(afb: CNIO)

Sinds in 2006 de Japanse onderzoeker Sjinja Yamanaka demonstreerde dat je uit gewone rijpe cellen weer (pluripotente) stamcellen kunt maken is dat in bijna elk genetisch lab gesneden koek maar hoe dat nou precies zit met die gefabriceerde stamcellen is nog steeds vrij duister. Welke genetische en andere signalen zorgen voor die omprogrammering. Onderzoeksters van het Spaanse kankerinstituut rond Maria Blasco denken dat telomeren, die ‘onnutte’ uitlopers van chromosomen daar een rol in spelen. Lees verder

Regeert een enkel eiwit het verouderingsproces?

Wormpjes zonder LIN-53

Links een wormpje met en rechts zonder LIN-53 (afb: Tursunlab MDC)

Onderzoekers van het Max Delbrückcentrum voor voor medische systeembiologie in Berlijn denken een epigenetisch mechanisme op het spoor te zijn gekomen dat een sterke invloed heeft op gezond ouder worden. Het lijkt er op dat een enkel eiwit, aangeduid met LIN-53, de spiersamenhang, levensduur en het peil van een essentiële suiker regelt. Kan dat waar zijn? Aangetekend dient te worden dat het om onderzoek bij rondwormpjes gaat, maar dat zijn wel ‘modeldiertjes’. Lees verder

Kunstmatig eiwit lijkt grote regelneef van een cel

Synthetische regeleiwit LOCKR

Het synthetische wondereiwit LOCKR (afb: UW)

Onderzoekers van de universiteit van Californië in San Fransisco en van de universiteit van Washington hebben een eiwit ontworpen en gesynthetiseerd, LOCKR gedoopt, waarmee processen in een cel kunnen sturen zoals de genexpressie. LOCKR staat voor de onmogelijke uitdrukking Latching, Orthogonal Cage/Key pRotein (oftewel: vergrendeling, orthogonaal kooi/sleuteleiwit; duidelijk?). LOCKR zou het eerste ontworpen biologische instrument zijn Lees verder

Onderzoekers herprogrammeren gen met licht (zeggen ze)

Lichtgestuurd gen

Het lichtgestuurde gen FGFR1, met en zonder licht (afb: Proc. of IEEE)

Al jaren wordt er geëxperimenteerd om met licht de activiteit van genen te sturen, een tak van sport die optogenetica wordt genoemd. Onderzoekers van de universiteit van Buffalo (nog nooit van gehoord) zeggen met die methode het gen FGFR1 te hebben ‘geherprogrammeerd’ in een kweek van hersencellen. Dat gen speelt een belangrijke rol in de ontwikkeling van embryo tot volgroeid organisme. Lees verder

Enig idee hoe organen ontstaan (?)

De orgaanontwikkeling

De orgaanontwikkeling bij zoogdieren doorloopt een vast ‘genprogramma’ dat in het begin grotendeels overeenkomt (afb: Kaessmann-lab)

Het ontstaan van het leven en alles wat er omheen hangt is nog steeds omhangen met vele geheimen (ook al doen we of we daar zo veel van af weten). Zo is voornamelijk duister hoe organen zich in een embryo ontwikkelen. Onderzoekers van de universiteit in het Duitse Heidelberg hebben, geholpen door de modernste DNA-uitlezers, wat licht in die duisternis geworpen. Er lijkt een soort ‘genetisch programma’ te zijn dat bepaalt welke organen zich waar in de vrucht vormen dat zowel geldt voor mensen als ook een aantal andere zoogdieren. Lees verder

Genschakelaars dubbel gezekerd

Neuronen ontwikkeld uit pluripotente stamcellen

Uit stamcellen ontwikkelde hersencellen

Het traject van stamcel naar rijpe cel schijnt goed ‘afgepaald’ te zijn, zo ontdekten onderzoekers van de Ludwig-Maximilian-universiteit in München. De voor die differentiëring belangrijke genschakelaars blijken dubbel gezekerd te zijn tegen onbedoelde activiteit. Lees verder

Hoe weten cellen wat ze moeten worden?

Fruitvliegjes

Fruitvliegjes

In 1891 sneed de Duitse bioloog Hans Driesch een tweecellige embryo van een zee-egel in tweeën. Elke halve embryo ontwikkelde zich weer tot een volledig larve, zij het wat kleiner dan normaal. Kennelijk weten de cellen wat ze moeten doen om tot een volledig exemplaar uit te groeien, maar hoe flikken ze ‘m dat? In die fase was de blauwdruk kennelijk nog niet gemaakt. Driesch is er niet uit gekomen en heeft de wetenschap in zijn frustratie gelaten voor wat die was, maar onderzoekers proberen er nu toch een vinger achter te krijgen. Het is nog steeds veel gissen en nog meer missen. Lees verder

Genexpressie bestuderen zonder cellen (?)

Genexperessie bestuderen zonder cellen

Sebastian Maerkl (afb: EPFL)

Cellen worden geregeerd door de epigenetica: het patroon van genen die al of niet actief zijn. Welke mechanismen daarbij een rol spelen is wel zo’n beetje duidelijk, maar hoe die genexpressie wordt aangestuurd en hoe die mechanismen werking is allebehalve duidelijk. Onderzoekers van polytechnische hogeschool in Lausanne (Zwi) hebben een methode ontwikkeld om genexpressie te bestuderen (en te voorspellen) zonder dat daar cellen bij worden bestudeerd. Ze bouwden ook een biologische ‘logische poort’ , bedoeld om celfuncties te veranderen, met behulp van synthetische transcriptiefactoren. Lees verder

Synthetische genschakelaar gemaakt

Genschakelaar

Uit/aan/uit (afb:Chemical Science)

Onderzoekers van de Tsjechische academie van wetenschappen en van de Karelsuniversiteit hebben een (synthetisch) molecuul gemaakt dat in staat is om genen aan of uit te zetten. Vooralsnog hebben ze de genschakelaar alleen nog maar ‘in vitro’ (met DNA-moleculen in een regeerbuis) uitgeprobeerd en niet in levende cellen. Lees verder

Mitochondriën meer dan alleen krachtcentrales cel

Mitochondriën

Mitochondriën

In de mitochondriën wordt de energie voor een cel opgewekt, maar die cellichaampjes blijken veel meer in hun mars te hebben. Door zich te splitsen of samen te voegen sturen de mitochondriën signaalstoffen uit die de celactiviteit regelen maar ook de vorming van zenuwcellen zou bevorderen. Lees verder