‘Geheugen’ cel deels ontrafeld

Transcriptiefactorbinding

Cohesine speelt een rol in het geheugen van de cel (afb. Cell)

Cellen hebben een geheugen, maar hoe dat werkt was nog niet bekend. Onderzoek aan het Zweedse Karolinska-instituut heeft tenminste een deel van die sluier opgelicht. Het blijkt dat eiwitringen die zich rond het DNA draperen deel uitmaken van het celgeheugen.
Cellen delen zich, pakweg, elke 24 uur. Het is wezenlijk dat de dochtercel een kopie is van de moedercel. Transcriptiefactoren, zoals veel in het leven zijn dat (een bepaald type) eiwitten, zorgen ervoor dat de cel een specifieke functie heeft en behoudt. Een spiercel blijft, na deling, een spiercel, een levercel een levercel enz. Het rare is dat bij elke celdeling het specifieke transcriptiefactorpatroon, dat dus borg staat voor het type cel, verdwijnt en dat dan zowel de moedercel als de dochtercel weer het juiste patroon moet zien te krijgen. Dat dat gebeurt is de zorg van het celgeheugen.
Zoals gezegd was tot voor kort, ondanks veel onderzoek, niet duidelijk hoe de cel dat klaarspeelt. “Het probleem is dat er in een cel zoveel DNA is dat het voor transcriptiefatoren onmogelijk is om in korte tijd hun weg terug te vinden”, zegt Jussi Taipale van het Karolinska-instituut en van de universiteit van Helsinki. “Nu hebben we een mogelijk mechanisme gevonden dat verklaart hoe het celgeheugen werkt, dat de cel helpt onthouden waar de transcriptiefactoren zich moeten binden.” De onderzoekers hebben de resultaten van hun onderzoek gepubliceerd in het blad Cell.
Het bleek uit hun onderzoek dat een groot eiwit, cohesine genaamd, zich als een ring om beide DNA-strengen ‘drapeert’, die gevormd worden bij de celdeling. Die eiwitringen markeren de plaatsen op het DNA waar de transcriptiefactoren waren gebonden. De eiwitringen vormen geen beletsel voor de, andere, eiwitten die zorgen voor de verdubbeling van de strengen (de replicatie). Er is dan maar één ring nodig om de juiste hechtingsplaatsen voor de transcriptiefactoren op twee DNA-strengen te markeren. Om er helemaal zeker van te zijn dat het gaat zoals de onderzoekers denken dat het gaat, is meer onderzoek nodig. “Maar de uitkomsten van de experimenten ondersteunen ons model”, stelt mede-onderzoeker Martin Enge. De onderzoekers hebben ook ‘kaarten’ gemaakt van de transcriptiefactorpatronen van de diverse cellen in het lichaam, de uitgebreidste tot nu toe.
Transcriptiefactoren spelen niet alleen een belangrijke rol in het vastleggen van het celtype, maar kunnen, dat is de andere kant van de medaille, een rol spelen bij het ontstaan en voortwoekeren van, al of niet erfelijke, ziektes. De ontdekking dat cohesine praktisch aan alle regelsequenties op het DNA bindt, zou van dat eiwit een aanwijzer kunnen maken welke delen van DNA ziekteverwekkende mutaties bevatten. “Nu analyseren we eigenlijk alleen de DNA-sequenties in de genen, ongeveer 3% van het genoom. De meeste locaties die kanker kunnen veroorzaken liggen elders”, zegt Enge. “We kunnen die niet op een betrouwbare manier analyseren, daar is het DNA-molecuul simpelweg te groot voor. Door nu alleen die sequenties te analyseren die aan cohesine binden, ruwweg 1% van het genoom, zou het ons mogelijk maken om aparte mutaties te analyseren en ons veel beter in staat stellen die schadelijke mutaties te identificeren.”

Bron: Science Daily

Verandering in histonen speelt rol in genexpressie

De grote Hugo de Vries had het over ‘latent’ en ‘actief’ als hij over genen sprak. Hij werd, na aanvankelijk gevierd te zijn, weggehoond: ‘dominant’ en ‘recessief’, de termen van de Oostenrijkse monnik Mendel, daar ging het om. Zo langzamerhand komen we er achter dat het allemaal wat minder simpel ligt. Genen kunnen, op zijn Vriesiaans, worden aan- en uitgeschakeld, maar hoe gebeurt dat? De Amerikaanse onderzoekers Lu Bai en David Stillman kwamen er via een studie bij gisten achter dat de zogeheten histonen, eiwitten die het DNA-molecuul inbedden, daarbij een belangrijke rol spelen. Veranderingen in de histonen maken dat een gen al of niet zijn functie uitoefent en zouden ook een belangrijke rol spelen in de handhaving (van die al of niet tot expressie komen van de gen), zodat die genen ook in de dochtercel aan- of uitgeschakeld blijven. Overigens is el eerder een verband gelegd tussen histonen en genexpressie

Lu Bai

Lu Bai

Genexpressie, of een gen ‘actief’ of ‘latent’ is (om bij De Vries te blijven), is een fundamenteel proces in de cel. Verschillende ‘expressiepatronen’ kunnen leiden tot een  volledig ander gedrag van de cel. Dat is natuurlijk ook ‘logisch’ als je bedenkt dat in een individu elke cel is ‘voorzien’ van precies hetzelfde DNA, terwijl er toch vele honderden celtypen bestaan. Bai:” Als er daarbij iets verkeerd gaat kan dat leiden tot ziektes.”
Door gebruik te maken van fluorescentie, was Bai en zijn team in staat de expressie van een bepaald gen (HO genoemd) in gistcellen te volgen in verschillende opeenvolgende celdelingen. Als HO ‘aan’ staat, dan verandert het ‘geslacht’ van de gist van ‘mannelijk’ in ‘vrouwelijk’ en omgekeerd. De expressie van HO zou in de moedercellen maar niet in de dochtercellen aangeschakeld moeten zijn. Grofweg klopte dat wel: in 98% van de moedercellen was HO aangeschakeld, maar toch ook in 3% van de dochtercellen. De vraag voor Bai et.al. was waarom het daar fout ging. Bai: “We vonden dat veranderingen in de histonconfiguratie daarvoor verantwoordelijk zijn en in sommige gevallen ‘herinnerde’ de cel zich zijn expressie: als HO in een cel is aangeschakeld, dan is het waarschijnlijk dat die ook in de daar uit voortgekomen cellen is aangeschakeld. Dat ‘geheugen’  is een gevolg van veranderingen in de histonen.”

Bron: Science Daily

Beweging werkt op onze genen

Ooit dacht men, en dat is nog niet eens zo lang geleden, dat als men maar eenmaal de basenvolgorde in het DNA kende, men een blauwdruk van het leven van het bijbehorende individu zou hebben. We moesten dan nog wel even uitzoeken wat die genen precies uitvoeren, maar dan hadden we ook het Boek des Levens.
vetsport
Niet dus. Wat we doen, eten en meemaken heeft invloed op de ‘activiteit’ van genen. Door dergelijke invloeden kunnen genen aan- of uitgezet worden. We noemen dat epigenetica.
Zo heeft fysieke activiteit effect op het epigenoom. Een onderzoek van
Charlotte Ling van de universiteit van Lund in Zweden heeft aangetoond dat beweging invloed heeft op de genen van vetcellen. Normaal zou het zijn als gekeken werd naar de invloed van sport op de genen van skeletspieren, maar Ling keek naar de cellen waar de energie wordt opgeslagen, de vetcellen, dus. Haar onderzoek laat zien dat sport effect heeft op genen die betrokken zijn bij zwaarlijvigheid en ouderdomssuiker (type 2).
23 mannen van ongeveer 35 dienden als proefkonijn. Ze waren gezond maar iets te ‘gewichtig’, want niet erg sportief. Ze stemden er in toe een half jaar drie keer per week aerobics te praktiseren. Dat lukte niet helemaal. Ze kwamen slechts tot een weekgemiddelde van 1,8. De onderzoekers volgden de effecten door het onderhuidse vet te meten. Om er zeker van te zijn dat sport de enige verandering in hun leven was, werd de proefpersonen gevraagd verder normaal met hun leven en gewoontes door te gaan.
Door het analyseren van 480 000 posities op het DNA, (overeenkomend met 7000 genen), konden ze constateren waar de veranderingen waren opgetreden (gekeken werd naar de methylering van het DNA, waardoor genen inactief worden) door het sporten. Op die manier kon een methyloom van het vetweefsel gemaakt worden, een soort ‘kaart’ van het gemethyleerde DNA. De onderzoekers hadden vooral belangstelling voor de genen die betrokken zijn bij zwaarlijvigheid en ouderdomssuiker.
Sport bleek invloed op die genen te hebben, zoals gezegd. Hoewel de onderzoekers het nog te vroeg vinden definitieve conclusies te trekken voor het hele lijf, lijkt het er volgens hen toch wel degelijk op dat lichamelijke activiteit minder kans geeft op ouderdomssuiker en zwaarlijvigheid. Dat laatste zal niet verbazen. De eerste ook niet, trouwens. Wel dat sport geen aan- en uitzet.

Zoektocht minimaal genoom zinloos (?)

Wolluis leeft in symbiose met twee bacteriën
In de wolluis leeft een bacterie met het, tot nu toe bekend, kleinste genoom: 120 genen

Al lang zoeken synthetisch biologen naar organismen met een minimum aantal genen en naar nog minder: hoeveel genen zijn er nodig om een organisme in leven te houden? Recente studie van John McCutcheon van de universiteit van Minnesota naar het erfgoed van twee bacteriën die in symbiose leven met een insect (de wolluis) lijken te wijzen in de richting dat het zoeken naar hét minimale genoom zinloos is.

Lang is de bacterie Mycoplasma genetalium met zijn 475 genen (een mens heeft 20 000 voor eiwitten coderende genen en de bekende E. coli-bacterie heeft er zo’n 4100). De bij bacteriën genen te strippen die niet absoluut noodzakelijk zijn voor het voorbestaan van het organisme, bleek dat E. coli’s iets meer dan 300 ‘noodzakelijke’ genen hebben. Stripprocedures bij andere bacteriën uitgevoerd kwamen tot andere getallen, maar ook andere genen. Er was ruim 10 jaar geleden al een bacterie ontdekt die in symbiose leeft met een insect (een wolluis) die leeft van het sap van planten, met een nog kleiner genoom. De bacterie zet dat plantensap om in voor het insect bruikbare vormen als aminozuren en vitamines. Die bacterie, Tremblaya princeps, heeft maar 120 genen. In die bacterie bleek nog eens een andere bacterie te huizen, Moranella endobia, die weer 406 eiwitcoderende genen had. Die Tremblaya-bacterie kan niet zonder zijn gast, net zo min als de wolluis kan zonder zijn Tremblaya.

John McCutcheon van de universiteit van Montana is het erfgoed van beide bacteriën gaan analyseren, om erachter te komen wat die bacteriën aan elkaar hebben. Ze blijken het chemische werk voor het tot stand komen van aminozuren te verdelen, die vervolgens worden samengesteld tot eiwitten. Volgens McCutcheon is het insect in een lang verleden eens besmet geraakt met de Tremblaya. De bacterie hielp het insect bij de stofwisseling, terwijl ie zelf van voedsel én bescherming werd voorzien. Daardoor zou de bacterie de meeste genen zijn kwijtgeraakt. Toen de bacterie op zijn beurt werd ‘besmet’ door de Moranella raakte hij nog meer genen kwijt en kwam uit op die magere 120. Deze twee bacteriën zijn de enige die in de wolluis leven, maar de McCutcheon en zijn medewerkers troffen in het erfgoed van het insect genen aan die van oude bacteriële ‘gasten’ afkomstig moesten zijn. Dat betekent dat het insect genen van die bacteriën heeft ‘overgenomen’. Het zou zijn gebleken dat wel zes verschillende bacteriën erfgoed aan de wolluis hebben ‘afgestaan’. Deze studie zou aantonen dat de zoektocht naar hét minimale genoom zinloos is. De Tremblaya heeft een ‘minimaal genoom’ maar kan niet zonder zijn gastheer en mede-symbiont. Leven is geen geïsoleerd verschijnsel. Leven is afhankelijkheid en de levensvormen met, tot nu toe, het kleinste genoom kan alleen maar bestaan bij de gratie van andere (genomen).

Bron: New York Times

Cellen ‘praten’ met elkaar

Cellen praten met elkaarEen stamcelkolonie (100x vergroot). (foto: © Jonathan Göke/GIS)

 

 

 

 

 

Cellen praten met elkaar of althans ze hebben een manier om met elkaar te communiceren. Onderzoekers van het Genoominstituut in Singapore (GIS) en van het Max Planck-instituut voor moleculaire genetica (MPIMG) in Berlijn probeerden er achter te komen welk deel van het erfgoed hierdoor wordt geactiveerd en ontdekten een netwerk waarmee menselijke embryonale stamcellen met elkaar communiceren.
Embryonale stamcellen vormen het ideale ‘bouwmateriaal voor genetici. Die kunnen zich tot ieder celtype ontwikkelen. Hoe dat in zijn werk gaat en wat er dan precies moet gebeuren om zich tot de juiste cel te ontwikkelen is nog grotendeels duister. De onderzoekers kwamen er achter dat embryonale stamcellen signalen krijgen om nog even stamcel te blijven. Daarnaast spelen nog een groot aantal andere factoren om stamcellen in hun ‘maagdelijke’ staat te laten.
Communicatie is wezenlijk in celsystemen. Stamcellen moeten immers ‘weten’ wat ze moeten worden. De signalen activeren een keten aan chemische reacties in de cel, waardoor bepaalde genetische informatie in het DNA wordt ingeschakeld. De onderzoekers konden vaststellen dat een bepaald enzym (het kinase ERK2) bepaalde plaatsen op en buiten het DNA activeert zoals niet-coderende genen en histonen (eiwtten waar het DNA in ‘verpakt’ is), maar ook de celcyclus, stofwisseling en stamcelspecifieke genen.
Bij deze ’tamtam’ tussen de cellen is nog een ander eiwit betrokken:  ELK1. Dat wisselwerkt met ERK2 om de genetische informatie te activeren, maar vervult een korte tijd (1 s) een tegenovergestelde functie. Op de plaatsen op het genoom die niet door ERK2 worden ‘aangesproken’, dempt ELK1 dan de informatie, waardoor de cel niet verandert.
Eerste auteur Jonathan Göke van GIS: “Dat ERK-signaalsysteem is al jaren bekend, maar het is nu voor het eerst dat we hebben gezien wat er allemaal gebeurt in het erfgoed van stamcellen. We hebben veel processen gevonden die verbonden zijn met de signalering, maar we hebben ook onverwachte dingen gevonden zoals die duale rol van ELK1. Het zou interessant zijn om te bekijken hoe dat signaalnetwerk werkt bij andere cellen, in weefsels of bij ziekten.”  Volgens medeonderzoeker Ng Huck Hui is deze studie belangrijk omdat het ons (iets) leert van de manier waarop embryonale stamcellen functioneren.

Bron: Science Daily

Er is RNA in soorten en maten

Michael McManus
RNA is een molecuul (complex dat wel) dat een grote rol speelt in de cel. Het bekendste RNA is het zogeheten boodschapper-RNA maar er zijn ook andere vormen van RNA die hun eigen partij meeblazen in de celhuishouding. Dat boodschapper-RNA (m-RNA) ‘leest’ de DNA-informatie op de genen op de DNA-streng en dient als mal voor de aanmaak van eiwitten in de ribosomen. Het overgrote deel van het DNA (meer dan 85%) is, zoals men vroeger zei, troep (junk). Maar ook dat niet-gen-DNA zorgt er voor dat er RNA ontstaat en het zou wel eens zo kunnen zijn dat die RNA producerende ’troep’ een grotere rol speelt bij erfelijke ziektes dan de rest van het ‘junk’-DNA,  vermoeden onderzoekers van de universiteit van Californië in San Fransisco.
De onderzoekers, onder leiding van Michael McManus, onderzochten welke stukken van het niet-gen-DNA (het gen-DNA wordt tegenwoordig maar op 1,5% van het geheel geschat) RNA maakten en welke niet. Ze kwamen tot vele duizenden voorheen onbekende, unieke RNA-sequenties, lincRNA’s gedoopt. “Nu wie die gevonden en geïdentificeerd hebben moeten we er achter zien te komen welke functie ze hebben,” zei McManus. Van slechts een handvol van die RNA-sequenties is bekend wat ze doen. Sommige regelen de activiteit van genen, andere begeleiden eiwitten op weg naar hun ‘werkplaats’. McManus vermoedt dat die speurtocht tientallen jaren zal duren.
Om de RNA-moleculen te traceren gebruikte McManus onderzoekgegevens van anderen (in totaal 125 dataverzamelingen), die de afgelopen jaren bij de bestudering van 24 typen menselijk weefsel waren verkregen. Het resultaat is de grootste verzameling lincRNA’s die er op het ogenblik is. Volgens McManus zijn zijn onderzoeksresultaten in overstemming met die van het zogeheten ENCODE-project waarvan in september vorig jaar de resultaten zijn gepubliceerd. In dat project ging het echter om cellijnen uit het lab, terwijl zijn studie gezond menselijk weefsel betrof.

Bron: Eurekalert (afb: Darryl Leja (NHGRI), Ian Dunham (EBI))

Heel genoom doorspitten vaak onnodig

Een heel genoom omspitten om er achter te komen welke stukken van het DNA een rol spelen bij een bepaalde ziekte is niet nodig, zo heeft een onderzoeksgroep van het Baylor-instituut voor medisch onderzoek onder aanvoering van James Lupski en Richard Gibbs  aannemelijk gemaakt. Ze richten zich daarbij op de Charcot-Marie-Tooth-ziekte. Ze waren op zoek naar 12 afwijkingen in het DNA die verantwoordelijk zijn voor deze zenuwziekte of die betrekking hebben op respons op gebruikte medicijnen als beta-blokkers. Ze zochten die in het DNA van de patiënt maar ook in het zogeheten exoom (dat deel van het DNA dat voor eiwitten codeert) van dezelfde patiënt. Het bleek dat ook in het exoom die 12 afwijkingen konden worden gevonden. Het ‘lezen’ van een exoom is een stuk goedkoper dan van het volledige DNA, maar onderzoekers waren bang dat ze daarmee dingen zouden missen.
Het exoomlezen (vaak sequencen genoemd) geeft minder valspositieven en is nauwkeuriger dan het lezen van het hele genoom. Volgens Gibbs is exoomsequencen om er achter te komen hoe iemand op medicijnen reageert of om te bepalen welke (erfelijke) ziekte de patiënt heeft daarom ook verre te verkiezen boven het lezen van het hele erfgoed.

Bron: Eurekalert

Succesvolle genmanipulator onder verdenking

RNG-techniek onder verdenking
Synthetische biologie staat (en valt) met de vaardigheid het erfgoed te manipuleren (oneerbiedig gezegd: het knippen en plakken van genen). Synthetische eiwitten, zogeheten CRISPR Cas RGN’s, leken daarbij perfect gereedschap. Je kon, bij wijze van spreken, naar believen stukjes DNA op een bepaalde plek in het genoom plakken of het er uit verwijderen. Een truc die bacteriën gebruiken om virussen en andere ziekteverwekkers onschadelijk te maken.
Dat mooie gereedschap blijkt toch zijn kwalijke kantjes te hebben, zo blijkt uit onderzoek van een groep aan het algemeen ziekenhuis in Massachusetts. De plak-en-knip-eiwitten plakten niet alleen stukjes DNA op de beoogde plaatsen, maar ook elders. Dat betekent niet meteen dat dit mooie gereedschap in de vuilnisbak kan worden gegooid. “We zullen”, zei J. Keith Joung van het ziekenhuis, ” de methode moeten verfijnen.”
Het gereedschap bestaat uit een combinatie van instrumenten. Het enzym Cas9, de schaar, is gekoppeld aan een kort stukje RNA dat past op het beoogde stukje DNA. Zoals gezegd is de gentechniek ‘geleend’ van bacteriën. Die kopiëren stukjes genetische codes van virussen of andere indringers en plakken dat in hun eigen DNA. Als dezelfde indringer zich later weer meldt, wordt diens DNA, met behulp van Cas9 in combinatie met het in eigen DNA geplakte stukje genetische code, effectief onschadelijk gemaakt.
Sinds een jaar passen onderzoekers die methode nu toe op het erfgoed van fruitvliegjes, zebravissen, muizen en menselijke cellen. Deze techniek zou een stuk effectiever zijn dan andere technieken die worden gebruikt voor het veranderen van het erfgoed als zinkvingernucleases (ZFN’s) of transcriptie-activatorachtige effectornucleases (TALEN’s). RGN’s kunnen zo worden ‘geprogrammeerd’, dat ze op diverse plaatsen nieuwe stukjes DNA kunnen plakken.
Het ging volgens de onderzoekers niet alleen mis bij stukjes DNA die maar een paar nucleotiden verschillen van het beoogde stukje (dat zou je een ‘vergissing’ kunnen noemen), maar ook bij stukjes DNA die tot wel vijf nucleotiden verschilden van het stukje DNA dat in het genoom geplakt moest worden. Dat misplakken is niet waargenomen bij de andere genmanipulatietechnieken. Joung heeft er alle vertrouwen in dat de problemen met de RGN-techniek kunnen worden opgelost, zodat die ook kan worden gebruikt voor therapeutische doeleinden bij mensen.

Bron: Science Daily (plaatje addgene)

Hoe het komt dat springende genen ons niet om zeep brengen

transposons
Springende genen (of transposons) zijn ‘vreemde’ elementen in ons erfgoed. Ze heten zo omdat ze de neiging hebben een andere plek in het genoom op te zoeken; vaak tijdens een proces dat duplicatie genoemd wordt. Ongeveer de helft van het menselijke erfgoed bestaat uit deze ‘genparasieten’. Springende genen kunnen al springende mutaties veroorzaken of terugdraaien.
Die transposons zijn niet alleen maar reislustig, maar ze zijn ook honkvast: ze laten een kopie achter op hun oude stek. Op den duur zou dat de dood van de ‘gastheer’ betekenen, maar dat is in werkelijkheid niet zo. Onderzoekers van de universiteit van Nottingham hebben, samen met die van Cambridge en het kankerinstituut in Seattle (VS), gevonden hoe dat in zijn werk gaat.
Ronald Chalmers, hoogleraar moleculaire en celbioiologie in Nottingham, is min of meer per ongeluk tegen het antwoord opgelopen. “We deden biochemisch onderzoek en vonden toevallig de oplossing. Het is zo simpel dat we eerst het vernuftige ervan niet konden waarderen. Hoe was het mogelijk dat dat niet jaren eerder was ontdekt?”
Het enzym transposase is verantwoordelijk voor het ‘springproces’. Dat bindt zich aan de einden van een transposon en zorgt voor het knippen en het plakken op een nieuwe plek in de DNA-streng (met achterlating van een kopie). Als het aantal kopieën een drempel overschrijdt, dan stijgt de transposaseconcentratie en raken de bindingslocaties bezet. Het enzym moet dan ‘vechten’ voor een plekje waaraan het kan binden en dan stopt de transpositie (het ‘springen’ van de genen, dus). Een verdubbeling van het aantal kopieën halveert de transpositiesnelheid, zo bleek uit computerberekeningen. Met andere woorden: de springende genen ‘vergiftigen’ zich zelf en houden daarmee hun gastheer in leven.

Bron: AlphaGalileo

Hooggerechtshof VS verbiedt octrooiering natuurlijke genen

Opperrechter Clarence ThomasDe Amerikaanse opperrechter Clarence Thomas

Menselijke genen kunnen niet gepatenteerd worden. Dat heeft het Amerikaanse hooggerechtshof unaniem besloten. Kunstmatig gemaakte stukjes DNA zijn wél octrooieerbaar, stelde het hof. In Amerika was het, in tegenstelling tot Europa, al 30 jaar gebruikelijk om ook stukjes natuurlijk DNA te octrooieren. De zaak ging om patenten van een bedrijf uit Utah (Myriad Genetics, Salt Lake City) op genen die betrekking hadden op borst- en op baarmoederhalskanker. De Amerikaanse biotechnologische sector was zwaar in het geweer gekomen tegen een ban op DNA-patenten. Die zou grote investeringen in genonderzoek en in gentherapieën op losse schroeven zetten. Opperrechter Clarence Thomas betoogde dat een stuk DNA een product van de natuur is en niet patenteerbaar is omdat dat gen toevallig door de patentaanvrager geïsoleerd is.

Bron: BBC