Er komt (weer) een CRISPR-schaar bij: Cpf1

De nieuw ontdekte DNA-schaar Cpf1

De versrpingende knip (rode pijltjes) van Cpf1 zou het invoegen van nieuw DNA vergemakkelijken

Cas9 is inmiddels een voor de reguliere lezers van dit blog bekende CRISPR-schaar om het geneoom mee te bewerken, maar Cas9 is niet de enige. Guillermo Montoya van de universiteit van Kopenhagen en medeonderzoekers hebben een nieuwe CRISPR-schaar ontdekt: Cpf1. Dit lid van de Cas-familie zou nog nauwkeuriger zijn dan Cas9. Lees verder

Pramel7 maakt het verschil tussen ‘alleskunnende’ stamcellen

Mneselijke embryo

Een menselijke embryo bestaand uit acht embryonale stamcellen

Je hebt stamcellen in maten en soorten. Aan de top staan de embryonale stamcellen die zich kunnen ontwikkelen tot alle soorten cellen in een organisme. De weefselstamcellen, zoals die in volwassen organismen voorkomen, kunnen zich alleen tot een bepaald type cel ontwikkelen. Zo zal een bloedstamcel zich nooit tot zenuwcel ontwikkelen, maar ook embryonale stamcellen in kweken verschillen van de stamcellen waaruit een foetus de eerste dagen na ontstaan bestaat. Zwitserse onderzoekers hebben nu ontdekt waarin die laatste twee ‘alleskunners’ in verschillen. Het eiwit Pramel7 maakt het verschil. Lees verder

LASSO ‘kloont’ duizenden nucleotiden in een keer

LASSO kloont grote brokken DNA

Met LASSO zouden grotere stukken van het genoom kunnen worden ‘gekloond’ dan tot nu toe mogelijk was (afb: Jennifer E. Fairman/Johns Hopkinsuniversiteit

Systematisch onderzoek doen naar wat welk eiwit en of gen doet is vast niet het leukste onderzoek wat je kunt doen, maar zeer nuttig voor het doorgronden van hoe dat complexe systeem leven in elkaar steekt. Het schijnt dat onderzoekers tot nu toe dat uitzochten door gen voor gen te ‘klonen’ en te  bekijken. Medeonderzoekers van de Johns Hopkinsuniversiteit en van de universiteit van Harvard hebben nu een systeem bedacht om duizenden nucelotiden tegelijkertijd te klonen om bibliotheken mee op te bouwen met de therapeutische waarde van de gevonden eiwitten. Lees verder

Kunstmatig eiwit helpt tegen griep

Kunstmatig eiwit als griepmedicijn?

Het kunstmatige eiwit (bruin) blokkeert het ‘aanklampeiwit’ (groen) op het virusmembraan (afb: Eva-Maria Strauch)

Het schijnt dat er een kunstmatig eiwit is ontworpen dat het het griepvirus onmogelijk maakt een cel aan te klampen en binnen te dringen. De onderzoekers hebben er hoge verwachtingen van, maar voorlopig is het eiwit nog niet op mensen uitgeprobeerd, dus ren niet meteen naar je huisarts. Lees verder

Een enkel molecuul cruciaal voor celdeling

ESCRT-eiwitten en 'opbouwer' Vps4 belangrijk voor de celdeling

ESCRT-eiwitten, belangrijk voor de celdeling, worden voortdurend vernieuwd door Vps4-moleculen (roze/geel) (afb: Beata Edyta Mierzwa, BeataScienceArt.com)

Onderzoekers van, onder meer, de universiteit van Genève denken ontdekt te hebben dat een enkel  molecuul een hoofdrol speelt in de celdeling. Het molecuul Vps4 blijkt de eiwitten die zich met membraamdeling bezighouden voortdurend te vernieuwen. Zonder lukt de deling niet of moeizaam. Meteen komen er dan weer speculaties om de hoek kijken over behandelingsmethoden tegen kanker en hiv. Lees verder

Hoe komt dat het hart geen kapotte hartcellen?

Hartaanval

Bij een hartaanval worden bloedvaten door een bloedprop geblokkeerd waardoor miljoenen hartcellen afsterven. Die schade wordt niet meer hersteld

Ik weet het: je mag in de kop van een artikel geen vraag stellen, maar ik doe het toch. Bij veel zoogdieren, ook de mens, is het herstelvermogen van beschadigd weefsel gering of zelfs helemaal afwezig. Een dwarslaesie in het ruggenmerg en de onderbreking in de zenuwbanen wordt niet meer gerepareerd, een hartaanval en de aangedane cellen worden niet vervangen. Je kunt je afvragen hoe dat komt. Onderzoekers in de VS schijnen een beginnetje van een antwoord te hebben.

Lees verder

Eiwit ontcijferd dat embryo beschermt tegen afweer moeder

HLA-G1 en HLA-G2 beschermen embryo tegen moederlijke afweer

HLA-G1 (l) en HLA-G2 als dimeer (paar) (afb: univ. van Hokkaido)

Embryo’s vormen eigenlijk een vreemd lichaam in de moeder en toch wordt de vrucht niet door het moederlijf afgestoten. Daarvoor zorgt een eiwit en als er niet is een tweede. Onderzoekers van de universiteit van Hokkaido (Jap) hebben nu de ruimtelijke structuur van dat reserve-eiwit ontrafeld. Dat zou van pas kunnen komen bij het onderdrukken van afweerreacties bij orgaantransplantaties. Lees verder

Kunstgenen maken (heel soms) functionele eiwitten

Darmbacterie Escherichia coli (E. coli)

Darmbacterie Escherichia coli (E. coli)

Dat is toch een beetje het wezen van synthetische (kunstmatige) biologie: de natuur naar je hand zetten ter meerdere eer en glorie en nut van jezelf. Met al die mooie gereedschappen in de CRISPR-gereedschapskist kun je zelf onnatuurlijke eiwitten bouwen, van de natuurlijke aminozuren waar eiwitten uit bestaan, maar ook van de vele aminozuren die de natuur niet gebruikt. Soms blijken die eiwitfrutsels nog te werken ook, ontdekte Michael Hecht van de universiteit van Princeton. Lees verder

Vreemd aminozuur verraadt welke eiwitten een cel aanmaakt

Merken van eiwitten met niet-natuurlijk aminozuur

De zogenaamde schakelaar. Het oranje (?) ovaaltje is azidonorleucine, het groene bolletje de (geheimzinnige) chemische verbinding die nodig is om het aminozuur in de eiwitten in te bouwen (afb: Rice-universiteit)

Onderzoekers van de Texaanse Rice-universiteit hebben een methode gevonden om eiwitten te merken met een aminozuur. Daarbij gebruikten ze niet-natuurlijke aminozuren, die verder het eiwit niet beïnvloeden in zijn werking. Daarmee kunnen ze gemakkelijker dan tot nu toe zien welke eiwitten een cel aanmaakt, m.a.w. welke genen actief zijn. Dat is voor allerlei onderzoek bijster handig al was het maar om zieke cellen van gezonde cellen te onderscheiden op moleculair niveau. Lees verder

Nieuwe taal voor genetische code op komst

Gehercodeerd bacterie-DNA

5% van het bacteriegenoom is ontdaan van twee ‘overbodige’ codons (afb: Wyss-instituut)

Drie DNA-bases, een triplet, coderen voor een van de twintig aminozuren waaruit een eiwit bestaat. Er zijn vier DNA-bases: C, G, T en A. Dat betekent dat je 64 verschillende tripletten hebt. Dat is te veel. Een groep onderzoekers van, onder meer, het Amerikaanse Wyss-instituut hebben de code van 5% het genoom van een Salmonella-bacerie zo veranderd, dat er twee ‘overbodige’ tripletten uit 5% van het DNA werden gehaald, werden ‘vrijgemaakt’, voor andere aminozuren. Bovendien zou die nieuwe genetische ’taal’ er voor zorgen dat de nieuwe levensvorm zich niet mengt met het natuurlijke leven, is het idee.  Nu de rest nog en hopen dat het beestje dan nog in leven blijft. Lees verder