Menselijke levercellen werken (in muis)

Muizen met menselijke levercellenPetrischalen met leverweefsel: een staaltje zelforganisatie van de levercellen (foto Takanori Takebe )

 

 

 

 

Het is Japanse onderzoekers van de universiteit van stad Yokohama gelukt muizen levercellen te bezorgen, menselijke nog wel. Die cellen functioneerden. De levercellen waren ontwikkeld uit menselijke stamcellen. Na de transplantatie van de cellen duurde het twee dagen voordat de cellen verbonden waren met het celweefsel van de muizen.
Om er achter te komen of de cellen ook echt werkten gaven de onderzoekers de muizen voedsel dat bij mensen anders verwerkt wordt dan bij muizen. In de urine van de dieren werden afvalproducten gevonden die bij de menselijke stofwisseling horen. Ergo, de levercellen werkten in de muizenlevers. De Japanse onderzoekers maakten bij hun experimenten, tot hun eigen verassing, gebruik van het vermogen tot zelforganisatie van cellen.
De hoop bij dit soort onderzoek is gevestigd op het ‘synthetiseren’ van nieuwe organen uit eigen celmateriaal, waardoor er geen afweerreacties van het eigen immuunsysteem optreden. Het zal echter nog wel even duren voor dat het zo ver is. De ontwikkeling is nog lang niet zo ver dat er een ‘volwassen’ orgaan kan worden gemaakt. Zo moet de lever, voor zijn ontgiftende arbeid, verbonden zijn met de gal. Of dat met de door de Japanners gehanteerde methode ook gebeurt, valt nog niet te bezien. Volgens Takanori Takebe  van de onderzoeksgroep zal het nog zeker tien jaar duren voor de eerste experimenten met mensen zullen plaatsvinden.
Bijzonder aan het onderzoek is dat de onderzoekers geen gebruik maakten van embryonale stamcellen maar van tot stamcellen omgevormde gewone cellen, de zogeheten pluripotente stamcellen. Rond embryonale stamcellen speelt zich nog steeds een ethische kwestie af, omdat daarvoor in principe eerst embryo’s moeten worden gemaakt. Bij pluripotente cellen speelt die ethische kwestie niet. De Japanners kregen het voor elkaar dat die stamcellen zich ontwikkelden tot levercellen. Aan de kweek in petrischaaltjes (zie foto) werden weefselcellen toegevoegd. Vervolgens leek, tot verbazing van de onderzoekers, alles vanzelf te gaan. De stamcellen organiseerden zich zelf tot orgaanbestanddelen. Tot nu toe ging men er van uit dat dat alleen in de ontwikkeling van een embryo gebeurt.

Bron: Der Spiegel

Cellen ‘praten’ met elkaar

Cellen praten met elkaarEen stamcelkolonie (100x vergroot). (foto: © Jonathan Göke/GIS)

 

 

 

 

 

Cellen praten met elkaar of althans ze hebben een manier om met elkaar te communiceren. Onderzoekers van het Genoominstituut in Singapore (GIS) en van het Max Planck-instituut voor moleculaire genetica (MPIMG) in Berlijn probeerden er achter te komen welk deel van het erfgoed hierdoor wordt geactiveerd en ontdekten een netwerk waarmee menselijke embryonale stamcellen met elkaar communiceren.
Embryonale stamcellen vormen het ideale ‘bouwmateriaal voor genetici. Die kunnen zich tot ieder celtype ontwikkelen. Hoe dat in zijn werk gaat en wat er dan precies moet gebeuren om zich tot de juiste cel te ontwikkelen is nog grotendeels duister. De onderzoekers kwamen er achter dat embryonale stamcellen signalen krijgen om nog even stamcel te blijven. Daarnaast spelen nog een groot aantal andere factoren om stamcellen in hun ‘maagdelijke’ staat te laten.
Communicatie is wezenlijk in celsystemen. Stamcellen moeten immers ‘weten’ wat ze moeten worden. De signalen activeren een keten aan chemische reacties in de cel, waardoor bepaalde genetische informatie in het DNA wordt ingeschakeld. De onderzoekers konden vaststellen dat een bepaald enzym (het kinase ERK2) bepaalde plaatsen op en buiten het DNA activeert zoals niet-coderende genen en histonen (eiwtten waar het DNA in ‘verpakt’ is), maar ook de celcyclus, stofwisseling en stamcelspecifieke genen.
Bij deze ’tamtam’ tussen de cellen is nog een ander eiwit betrokken:  ELK1. Dat wisselwerkt met ERK2 om de genetische informatie te activeren, maar vervult een korte tijd (1 s) een tegenovergestelde functie. Op de plaatsen op het genoom die niet door ERK2 worden ‘aangesproken’, dempt ELK1 dan de informatie, waardoor de cel niet verandert.
Eerste auteur Jonathan Göke van GIS: “Dat ERK-signaalsysteem is al jaren bekend, maar het is nu voor het eerst dat we hebben gezien wat er allemaal gebeurt in het erfgoed van stamcellen. We hebben veel processen gevonden die verbonden zijn met de signalering, maar we hebben ook onverwachte dingen gevonden zoals die duale rol van ELK1. Het zou interessant zijn om te bekijken hoe dat signaalnetwerk werkt bij andere cellen, in weefsels of bij ziekten.”  Volgens medeonderzoeker Ng Huck Hui is deze studie belangrijk omdat het ons (iets) leert van de manier waarop embryonale stamcellen functioneren.

Bron: Science Daily

Peptide’schakelaar’ door licht gestuurd

Peptidelichtschakelaar Onderzoekers van een aantal Catalaanse instituten hebben peptiden (relatief korte stukjes eiwit) gemaakt die onder invloed van licht van een bepaalde golflengte van vorm veranderen. Daarmee maken ze al of niet de reacties tussen andere eiwitten mogelijk. Je moet dan denken aan het openen of sluiten van ionkanalen in het celmembraan, waardoor stoffen wel of niet de cel binnen kunnen komen (of er uit). De Italiaanse onderzoekster Laura Nevola, verbonden aan het instituut voor biomedisch onderzoek van projectleider Ernest Giralt, heeft vier jaar gewerkt aan de ontwikkeling van de lichtgevoelige peptiden. Hiermee zouden biologische processen kunnen worden bestuurd en bestudeerd.
Dan zal het toch vooral gaan om cellen in een celkweek in een petrischaaltje (een glazen labschaaltje), al schijnen de gedachten ook uit te gaan naar therapeutische toepassingen bij huidaandoeningen of het oog. Er zal wel iets aan de golflengte gedaan moeten worden waarop de peptiden reageren. De nu gebruikte uv-straling (380 nm) is niet gezond voor de cel. Bovendien zal het gebruikte licht enig doordringend vermogen moeten hebben om het geheel te laten werken, zeker als het als therapeutische hulpmiddel zou worden ingezet. Ook de stabiliteit van de gemaakte peptiden laat nog te wensen over.

Bron: Eurekalert

Hoe houd je springende genen in bedwang?

De eierstokken van een fruitvliegje Eierstokken van een fruitvliegje. De eiwitten die een rol spelen in de piRNA-route zijn groen, DNA blauw (foto IMBA)

In de loop van de evolutie is er heel wat ‘ongerief’ in ons DNA terechtgekomen. Springende genen (ook wel transposons genoemd) zijn daar een voorbeeld van. Eigenlijk zouden we die springende genen liever kwijt dan rijk zijn, omdat ze het grote risico in zich bergen van ernstige mutaties en het breken van DNA-strengen. Dat is niet gebeurd. Die transposons worden echter onschadelijk gemaakt door een verdedigingsmechanisme, dat nu door een groep onderzoekers rond Julius Brennecke van het instituut voor moleculaire biotechnologie in Wenen (IMBA) is uitgeplozen bij fruitvliegjes. Het blijkt dat zo’n vijftig genen zijn betrokken bij het belangrijkste beschermingsmechanisme tegen de kwalijke effecten van springende genen, dat aangeduid wordt met piRNA-route.
Pakweg de helft van het menselijke, maar ook ander dierlijke en plantaardige erfgoed (genoom) bestaat uit wat genoemd wordt genoomparasieten zoals transposons. Deze ‘zelfzuchtige’ genen kunnen zich bij de voortplanting min of meer vrij door het DNA-molecuul verplaatsen. Dat is, zoals gezegd, riskant voor de soort, maar planten en dieren hebben zich daartegen gewapend. Je zou het kunnen beschouwen als een soort genoomimmuunsysteem.
Tot nu toe was er weinig van bekend hoe dat mechanisme werkt. Ruw geschetst werkt dat mechanisme met bepaalde eiwitten (Piwi-eiwitten) die binden aan stukjes RNA en zo een complex vormen. Die complexen herkennen transposons en voorkomen dat die stukjes DNA worden omgezet in RNA en verhinderen dus de vorming van ongewenste eiwitten.
De 50 geïdentificeerde genen die bij dat mechanisme zijn betrokken in het fruitvliegje, komen voor een belangrijk deel ook in het menselijk erfgoed voor. De onderzoekers verwachten dan ook dat deze resultaten ook, althans deels, gelden voor andere dieren (ook mensen). Sommige van die genen zijn nodig voor het produceren van piRNA’s, maar andere zijn verantwoordelijk voor de stofwisseling in de mitochondriën (de ‘energiecentrale’ van een cel), het transport van RNA of de transcriptie.
De ontdekking van de Weense onderzoekers is pas het begin. Er blijven genoeg vragen over. Bijvoorbeeld waarom die transposons nog in ons erfgoed zitten. Je zou kunnen zeggen dat dat een ingebouwd mechanisme voor evolutie is, maar is dat ook zo? Een andere kwestie is natuurlijk hoe de piRNA’s van generatie op generatie worden doorgegeven. Wordt, ongetwijfeld, vervolgd.

Bron: AlphaGalileo (foto: IMBA)

Afweer gedeeltelijk onderdrukt

Gedeeltelijke onderdrukking afweersysteem Ons afweersysteem is een mooi systeem, maar soms zou je willen dat het niet werkte. Mensen met een transplantaten moeten afweerremmende medicijnen slikken en sommige medicijnen worden bestookt door ons defensiesysteem. Of soms is ons afweersysteem in de war en dan keert het zich tegen het eigen lijf zoals bij reuma.
Dat hele afweersysteem lamleggen is niet zo’n goed idee, maar in bepaalde gevallen, zoals bij transplantaties, ontkom je daar niet aan. Wat zou het niet aardig zijn als je alleen dat stukje van het afweersysteem zou uitschakelen dat voor ‘moeilijkheden’ zorgt (kan zorgen).
Precies dat hebben onderzoekers van het Amerikaanse Scripps-instituut gedaan. Ze slaagden er in bij hemofiele muizen de afweer tegen een toegediende stollingsfactor (factor VIII) uit te schakelen, terwijl het immuunsysteem overigens intact bleef. Bij hemofilie (bloederziekte) ontbreken bepaalde eiwitten (stollingsfactoren) die er voor moeten zorgen dat bij verwonding het bloed stolt. Hemofiliepatiënten krijgen die stollingsfactoren toegediend, maar bij zo’n 20 tot 30% maakt het afweersysteem die vreemde indringers weer onklaar.
De onderzoekers, onder aanvoering van James Paulson, maakten daarbij gebruik van de bijzondere kernmerken van de zogeheten B-cellen, die een belangrijke rol spelen in het afweermechanisme van ons lichaam. B-cellen, behorend tot de witte bloedlichaampjes of lymfocyten, zijn er in vele soorten en maten. Zo’n gespecialiseerde cel reageert op een heel specifiek antigeen (elke stof die een afweerreactie oproept) en zorgt er vervolgens voor dat het antilichaam wordt aangemaakt dat het antigeen onschadelijk maakt. Daarnaast bezit zo’n B-cel een receptor die in de aanwezigheid van een bepaald molecuul er voor zorgt dat de B-cel sterft. Dat alles is bedoeld om er voor te zorgen dat het afweersysteem maat houdt.
Van die laatste mogelijkheid hebben de TRSI-onderzoekers gebruik gemaakt. De stof die de celdood in gang zet bij die specifieke factor VIII-B-cellen is glycan, een soort suiker. Dat gebeurt wanneer glycan koppelt aan de receptor (CD22 in het plaatje). Door de hemofiele muizen nu nanodeeltjes toe te dienen waarin zowel glycan als de stollingsfactor VIII zitten, bleken ze die factor VIII-B-cellen uit te schakelen die zich anders tegen de vreemde stof zou hebben gekeerd. De toediening van de nanodeeltjes zorgde er ook voor dat het effect (het niet afstoten van factor VIII) maanden aanhield en mogelijk permanent zou kunnen worden.
Deze, wat genoemd wordt, liposomale nanodeeltjes zijn, voor andere toepassingen, al goedgekeurde door het Amerikaanse geneesmiddelenagentschap FDA, zodat klinische proeven bij mensen wat minder problematisch zullen zijn dan zonder die goedkeuring. De onderzoeksgroep gaat nu uitzoeken of deze techniek ook kan worden gebruikt bij transplantaties of bij autoimmuunziektes als multiple sclerose. “We weten dat die zaken ingewikkeld zijn, maar onze techniek zou, in combinatie met anderen, kunnen helpen.”, zei Paulson.

Bron: Science Daily (plaatje uit artikel in J.Clin.Inv.)

Komt er dan toch een mammoet?

Niet zodra kreeg de mens enig zicht op hoe de erfelijkheid in elkaar steekt of de wens kwam naar boven om die lieve schattige mammoet weer tot leven te wekken. Dat is vrij problematisch, omdat we maar kleine stukjes en beetjes van het erfelijk materiaal van deze oerolifant vinden als er weer ergens zo’n beest uit het ijs wordt gebikt. DNA is organisch materiaal en dat overleeft niet intact duizenden jaren; zelfs niet in de permafrost. De hoop tot de ‘herleving’ van de mammoet krijgt weer voeding, door de vondst begin mei van een, wat Der Spiegel noemt, verbazingwekkend goed geconserveerd mammoetkadaver.
Het mammoetlijk was zo goed geconserveerd dat er nog bloed in kon worden aangetroffen. Niet eerder was er een mammoet ontdekt die nog zo ‘intact’ was. Het gaat om een vrouwtje dat zo’n 10, 15 000 jaar geleden op een leeftijd van 60 jaar het leven gaf. Niet alleen bevatte het kadaver bloed, maar ook spierweefsel; volgens de Russen “rood als vers vlees”. Russische onderzoekers willen de mammoet tot leven klonen met behulp van, hopen zij, goed bewaarde cellen.
Weer mammoets op de toendra?
Expeditieleider Semjon Grigorjev, die werkt aan de staatsuniversiteit in Jakoetsk, had ooit connecties met de gevallen Zuid-Koreaanse kloon-ster Hwang Woo Suk, die meermalen aankondigde mammoets te zullen klonen, maar in het voorjaar vorig jaar maakte de Russische academie van wetenschappen bekend met hem te hebben gebroken.
Toen in 2008 het erfelijk materiaal van de mammoet uit al die gevonden stukjes en beetjes voor een groot deel was gereconstrueerd, leefde al het idee om een mammoet te klonen, maar destijds achtte het wetenschapsblad Nature de slaagkans gering. Om het beest weer tot leven te wekken heb je eicellen nodig. Die heb je niet, dus zou je eicellen van olifanten moeten gebruiken waar de kern uit wordt gehaald en vervangen door een mammoetkern, die je dan uit een van de intacte mammoetcellen zou moeten halen. Of zich daar een volbloed mammoet uit ontwikkelt is onwaarschijnlijk. Een eicel bevat niet alleen kern-DNA, maar ook mitochondriaal DNA en die is weer van de donor, de olifant.

Bron: Der Spiegel (foto Der Spiegel

Gericht gaatjes prikken in cellen

Injecteren van een kleurstof in de cel met behulp van nanoelektroporatie. Uit Nano Letters. Copyright 2013 American Chemical Society.
Injecteren van een kleurstof in de cel met behulp van nanoelektroporatie (Nano Letters, copyright 2013 ACS.

Voor onderzoek aan cellen is het vaak nodig gaatjes in cellen te prikken waardoor de onderzoeker allerlei moleculen de cel in kan ‘smokkelen’. Dat prikken van gaatjes, dat gaat met behulp van elektrische ontladingen, gebeurt echter nogal willekeurig en de celsterfte is groot omdat alle cellen aan die wat genoemd wordt elektrop(erf)oratie worden blootgesteld. Aan de Amerikaanse Northwestern-universiteit is een veel verfijndere techniek ontwikkeld die de gaatjes in één bepaalde (deel van de) cel maakt, de nanoelektroporatie. Daardoor zijn onderzoekers in staat zeer nauwkeurig te regelen wanneer hoeveel van een bepaalde stof in de cel terechtkomt. “Daarmee”, zegt onderzoeker Horacio Espinosa, “kun je veel beter onderzoek doen naar de effecten van doseringen van verschillende medicijnen met als uiteindelijk doel de gepersonifieerde behandeling.”
Het feitelijke apparaatje, is een microchip met tipjes (zoals de punt van een atoomkrachtmicroscoop), waardoor microkanaaltjes lopen. Via die kanaaltjes wordt de beoogde stof in de cel gebracht. Het chipje kan worden gemanipuleerd door een micromanipulator of door die atoomkrachtmiscroscoop. Het hele proces van perforeren en injecteren kan in de gaten worden gehouden door een optische microscoop. De techniek, aangeduid met het letterwoord NFP-E, blijkt betrouwbaar en flexibel, zo zeggen de onderzoekers. Er kan van alles mee in een cel gebracht worden: eiwitten, polysacchariden (suikers), stukjes DNA en plasmiden.

Bron: ScienceDaily

 

Lege eicel + kern huidcel = embryonale stamcel

dr.Shroukhat Mitalipov Stamcellen zijn heftig in. Was gister te melden dat een Amerikaanse onderzoeksgroep direct uit bindweefselcellen hersencellen had ontwikkeld, dan is het vandaag de beurt aan onderzoek waarbij uit gespecialiseerde cellen (menselijke huidcellen) embryonale stamcellen zijn ontwikkeld. Het zou voor het eerst zijn dat een onderzoeksgroep er in geslaagd is embryonale stamcellen te ontwikkelen uit gespecialiseerde cellen. Onderzoekers van de universiteit van Oregon onder aanvoering van Shoukhrat Mitalipov hadden eerder huidcellen van apen ‘gereprogrammeerd’ tot embryonale stamcellen. Dat deden ze door de kernen van de huidcellen te plaatsen in een eicel waar het genetische materiaal uit was gehaald. Die eicel ontwikkelde zich tot embryonale stamcellen die zich op hun beurt weer kunnen ontwikkelen tot elk type cel, zoals zenuw-, hart- of levercellen. Omdat het genetisch materiaal van de ontvanger gebruikt wordt, is er geen gevaar voor afstoting. Met deze techniek, in feite klonen, is de lastige horde genomen van de fragiliteit van de menselijke eicel. Daarop leden eerdere pogingen menselijke cellen te klonen tot nu toe schipbreuk. De crux van de onderzoekers is de eicel in de metafase te houden gedurende het inbrengen van de kern van de huidcel. De metafase is een stap in het, natuurlijke, celdelingsproces (de zogeheten meiose), waarbij het genetisch materiaal zich in het midden van de cel bevindt alvorens de cel zich deelt. Daar slaagden de onderzoekers in door toevoeging van bepaalde chemische verbindingen.
Overigens schijnen de op deze wijze gekloonde cellen bij apen zich niet te ontwikkelen tot babyaapjes. Verwacht wordt dat dat ook geldt voor de menselijke klooncellen. Daarmee raakt dit onderzoek aan een zeer gevoelig onderwerp: het maken van menselijke klonen. “Ons onderzoek is gericht op het maken van stamcellen voor therapeutisch gebruik in de toekomst”, zegt Mitalipov. “Reproductief klonen is niet ons doel en ik denk ook niet dat ons onderzoek de mogelijkheid van het reproductief klonen van mensen dichterbij heeft gebracht.”
Embryonale stamcellen wordt een grote toekomst toegedicht in de gezondheidszorg. Anders dan de zogeheten pluripotente stamcellen, kunnen embryonale stamcellen zich tot elk type cel ontwikkelen zonder het risico, zoals bij pluripotente stamcellen, dat ze zich ontwikkelen tot kankercellen of andere problemen veroorzaken. Het gebruik van embryonale stamcellen ligt echter onder vuur omdat, zoals de naam al aangeeft, daarvoor, voor menselijk gebruik, menselijke embryocellen worden gebruikt. Deze methode zou dat probleem omzeilen, al heb je natuurlijk wel eicellen nodig. Het zal overigens nog wel jaren duren voor embryonale stamcellen zullen worden gebruikt in de medische praktijk. Eer het zo ver is zullen nog heel wat hordes moeten worden weggenomen om toepassing van embryonale stamcellen voor therapeutisch gebruik veilig en effectief te maken.

Bron: Eurekalert

Bindweefselcellen omtoveren in zenuwcellen

Bindweefselcellen veranderd in zenuwcellen (afb. Cell Reports) Onderzoekers van de universiteit van Wisconsin hebben bindweefselcellen (fibroblasten) omgetoverd tot neuronen. Dat is geen wereldnieuws want al in 2006 liet de Japanse onderzoeker Sjinja Yamanaka dat je gespecialiseerde cellen kunt veranderen in zogeheten pluripotente stamcellen. Stamcellen zijn dan weer cellen die zich kunnen ontwikkelen tot gespecialiseerde cellen zoals zenuwcellen (neuronen), huidcellen of welk type cellen dan ook. De methode die de Amerikaanse onderzoekers, vrijwel allen voorzien van een Chinese naam, verliep echter niet via de omvorming tot stamcellen, maar uit de fibroblasten werden direct zenuwcellen gevormd. Daartoe hadden de onderzoekers de hulp ingeroepen van het Sendai-virus, die voorzien was van wat Yamanaka-factoren wordt genoemd, bepaalde genen die Yamanaka gebruikte om van gespecialiseerde cellen pluripotente stamcellen te maken. De cellen, ze waren zowel van mensen als van apen afkomstig, werden op kweek gezet met aantal andere ingrediënten, en op 39°C gebracht om, onder meer, het virus te deactiveren. Na 13 dagen verschenen de eerste neurale voorlopercellen. Er was geen spoor van pluripotente stamcellen te vinden.
Die pluripotente stamcellen zijn weliswaar veelbelovend (je hebt geen embryonale stamcellen meer nodig), maar hebben toch zo hun nare kantjes. Het wil nog wel eens voorkomen dat dat type cellen zich ontwikkelt tot kankercellen en ook kan het zo zijn dat zo’n pluripotente cel zich, bijvoorbeeld, in de hersenen ontwikkelt tot levercel. Met deze methode is die klip omzeild.
De op deze wijze gevormde zenuwcellen werden vervolgens in de hersenen van een pasgeboren muis ingebracht. Volgens onderzoeksleider Su-Chun Zhang ontwikkelden die cellen zich tot normale hersencellen. Geen kanker, dus.
Ook elders hebben onderzoekers bindweefselcellen veranderd in zenuwcellen via een andere route, zo meldt Futura-Sciences, maar volgens de onderzoekers van de universiteit van Wisconsin zou hun methode zekerder zijn een beter toegerust voor therapeutische toepassingen.

Bron: Futura-Sciences

Met cellen gevuld nierkarkas werkt weer (wat)

De lege nier wordt in glas weer met cellen gevuld In het academisch ziekenhuis van de Harvard-universiteit (Massachusets) hebben onderzoekers een van levende cellen ontdane nier van een rat in vitro weer ‘gevuld’ met nier- en bloedcellen. In het lab bleek die ‘heringerichte’ nier urine te produceren en ook teruggetransplanteerd in de rat functioneerde het orgaan naar behoren. De onderzoekers denken dat hiermee een grote stap is gezet op de weg naar het wegwerken van het tekort aan orgaandonoren. Het eigen orgaan wordt dan, buiten het lichaam, gestript van de levende cellen, waarna er een ‘geraamte’ van collageen overblijft. Daarna worden er, door een subtiel spel met (water)druk, verse orgaan- en bloedcellencellen in het lege orgaankarkas ingevoerd. Op die manier zouden ook weer een nieuw hart, nieuwe longen en lever gemaakt kunnen worden.
“Wat het uniek maakt is dat de bouw van het eigen orgaan wordt bewaard, zodat het vernieuwde orgaan net als een donororgaan weer kan worden aangesloten op de bloedvaten en urinewegen”, zegt onderzoeker Harald Ott. Waarschijnlijk beter, omdat het orgaan de oude vorm heeft behouden. “De patiënt zou dan een orgaan met zijn eigen cellen krijgen.” Daarmee zou, zoals nu bij implantatie van niet-eigen organen, het niet langer nodig zijn het afweersysteem levenslang te onderdrukken, om te voorkomen dat dat het vreemde donororgaan afstoot.
Helemaal volmaakt is de techniek nog niet. De ‘nieuwe’ nier in de rat functioneerde veel slechter dan de gezonde nier. De onderzoekers wijten dat aan de ‘onvolwassenheid’ van de nieuwe cellen. “Een verdere verfijning van de celtypen die gebruikt worden en rijping vooraf in een cultuur zou een beter functionerend orgaan kunnen opleveren.”, zegt Ott. “We hopen op die manier op een gegeven moment een volledig functionerende nier voor mensen te kunnen maken.” En andere organen, dus.

Bron: Eurekalert