De moleculaire knop van GTPase is niet uit of aan maar ook aan/uit

De moleculaire knop van enzymen (GTPases)

De aan/uit-knop van de GTPases is wat ingewikkelder dan gedacht (afb: univ. van Aarhus

De GTPases vormen een uitgebreide familie van enzymen, die betrokken zijn bij de celgroei, het transport van moleculen, de vorming van eiwitten enzovoorts. Hoewel de functies divers zijn volgen die enzymen alle dezelfde kringloop (zie plaatje). De activiteit van de enzymen wordt geregeld via binding aan guanosinefosfaten. Is het enzym gebonden aan guanosinedifosfaat (GDP) dat is het enzym niet-actief en verbonden met guanosinetrifosfaat dan is enzym actief. Dacht men, maar dat blijkt niet helemaal te kloppen.  Lees verder

Nieuw ontdekte reuzenvirussen zijn geen minimalisten

Reuzenvirussen hebben bijna volledig translatieapparaat

Tupanvirussen (afb: univ. van Aix-Marseille)

Virussen worden door nogal wat biowetenschappers niet als levende organismen beschouwd. Virussen zijn genetisch gezien minimalisten die alleen de hoogstnodige genen hebben. Ze kunnen zich niet repliceren en kunnen geen eiwitten aanmaken. Daarvoor zijn virussen afhankelijk van de genetische machinerie van hun gastheer. Twee onlangs in Brazilië ontdekte reuzenvirussen, tupanvirussen gedoopt, zijn niet alleen groot, maar hebben voor een virus ongewoon uitgebreid genoom. Ze bezitten zelfs genen voor de aanmaak van eiwitten. Het ontbreekt die reuzenvirussen alleen aan de eiwitfabriek, het ribosoom. Lees verder

Nu kun je ook eiwitproductie cel sturen (schijnt)

Genexpressieknop.

Het RNA-molecuul wordt afgelezen in het ribosoom (de bolletjes waaruit de blauwe eiwitslierten komen). Hoe langer de ‘A-baan’ (PolyA track) hoe minder eiwit (afb: Nature Communications)

Er kan al heel wat afgeregeld worden aan het genoom, maar dat wil nog niet zeggen dat we alles in de greep houden. Het lijkt er op dat er nu een nieuwe ‘vaardigheid’ is bijgekomen: het sturen van de activiteit (expressie) van genen. Of genen actief zijn of niet is voor een belangrijk deel per celtype vastgelegd. Genen kunnen ge(de)activeerd worden, maar hoeveel van het bijbehorende eiwit ‘produceert’ een actief gen dan? Onderzoekers van de universiteit van Washington in St. Louis (VS) schijnen nu het ‘knopje’ gevonden te hebben om aan te draaien. Het schijnt een eenvoudig systeem te zijn en het werkt zowel bij bacteriën, planten als zoogdiercellen (dus ook bij menselijke). Lees verder

Translatie in cel direct bekeken

De geboorte van eiwitten in beeld gebracht

Een plaatje uit het filmpje van Stasevich. Rood is RNA, blauw en groen eiwitten. De grote groene vlek op de achtergrond is de kern (afb: univv. Colorado)

Onderzoekers van de universiteit van Colorado hebben de translatie in een cel via een bijzondere microscoop rechtstreeks kunnen volgen. Translatie is het proces in de cel waarbij het boodschapper-RNA in het ribosoom wordt afgelezen en waaruit uiteindelijk eiwitten ontstaan. Cruciaal voor het resultaat was de microscoop die gebruikt werd.  Die werd gebouwd door onderzoeksassistent Tatsuya Morisaki en bestaat uit twee uiterst gevoelige camera’s en heeft geen bewegende delen.  Ook Robert Singer van het Albert Einsteincollege voor geneeskunde heeft, met andere middelen een soortgelijk resultaat bereikt.
Lees verder

Kunstmatig ribosoom gemaakt

Ribosoom

Het ribosoom is zelf opgebouwd uit eiwitten en stukken RNA

Onderzoekers van de universiteit van Illinois in Chicago en de Northwestern-universiteit (VS) hebben een ribosoom in elkaar geknutseld dat haast als een echte eiwitfabriek werkt. Een ribosoom fabriceert in een cel eiwitten op instructie van RNA dat op zijn beurt weer is gekopieerd van een stukje DNA. Het kunstmatige ribosoom zou gebruikt kunnen worden voor het maken van medicijnen of andere biomaterialen en bovendien het inzicht in de werking van dat organel kunnen vergroten, stellen de onderzoekers. Lees verder

Misschien is leven toch niet ontstaan in RNA-wereld

Niet-RNA-wereld

Zo zou het leven zijn ontstaan volgend Loren Williams, waarbij enzymen en RNA samenwerken. Links de ontwikkeling volgens de theorie van de RNA-wereld.

Ter verklaring hoe het leven ontstaan is op aarde wordt onder mensen die daar mee bezig zijn vrij breed de theorie van de RNA-wereld aangehangen, waarbij RNA fungeerde als zowel enzym als informatiedrager (een functie die tegenwoordig is toebedeeld aan DNA). De Amerikaanse biochemicus Loren Williams vertelde vorige week op het astrobiologiecongres in Chicago dat hij, op goede gronden, twijfelt aan de juistheid van die theorie. Het ontwarren van de raadsels rond het ontstaan van het leven kampt met een hoog kip/ei-gehalte. Zo zijn enzymen nodig om nucleotiden te maken, de bouwstenen van RNA en DNA, maar om die te maken heb je genetische informatie nodig. Dus bedachten onderzoekers dat voor het ontstaan van leven er al RNA-moleculen waren. Dat lijkt op het verleggen van het probleem, maar voorlopig is de RNA-wereld de minst gammele theorie die we hebben. Lees verder

DNA-code (b)lijkt niet nagelvast

DNA-codeSommige dingen in heel ingewikkelde systemen zijn of lijken erg eenvoudig. Het systeem dat leven heet is knap ingewikkeld en ook het eindeloze DNA-molecuul in elke menselijke cel kent vele geheimen en donkere krochten, maar het leek toch duidelijk hoe dat molecuul codeert. Elke drietal opeenvolgende ‘letters’ van het vier letters tellende DNA-alfabet (A, C, G, T) staat voor een aminozuur. Die code wordt via boodschapper-RNA overgebracht op de eiwitfabriek, het ribosoom, waar het eiwit wordt geassembleerd. Zogeheten start- en stopcodons vertellen het ribosoom waar te beginnen en waar op te houden. Dat beeld blijkt niet helemaal te kloppen. Soms blijken start- of stopcodons (een codon is een trits nucleotiden achter elkaar) genegeerd te worden, ontdekte Natalia Ivanova van het het genoominstituut van het Amerikaanse ministerie van defensie van Walnut Creek (Cal) bij bacteriën. Er staat niet wat er staat. Lees verder

Klein RNA-molecuul kan ‘eiwitfabriek’ lamleggen

ncRNA

Een slechts 18 nucleotiden lang RNA-molecuul is in staat de eiwitfabriek van een gistcel stil te leggen (afb: Cell).

Een biologisch gezien klein (RNA-)molecuul is in staat om het ribosoom, de eiwitfabriek van een cel, lam te leggen, zo ontdekte Norbert Polacek van de universiteit van Bern. Die ontdekking zou kunnen leiden tot een nieuwe familie antibiotica, denkt de onderzoeker. Lees verder

De kwaliteitsbewaking in een cel enigszins ontrafeld

Cellen hebben een kwaliteitsbewakingsysteem, dat er voor zorgt dat er geen verkeerde eiwitten worden aangemaakt. Hoe dit systeem, naar een Engelse afkorting NMD genoemd, werkt was niet bekend. Nu is een onderzoeksgroep van de universiteit van Bern er in geslaagd een tipje van de sluier op te lichten.
Eiwitten worden in het ribosoom aangemaakt, waarbij het van een stukje DNA gekopieerde boodschapper-RNA (mRNA) als mal dient. Soms is dat m-RNA verkeerd van het DNA gekopieerd. Kwaliteitsbewaker NMD zorgt er voor dat er geen foute eiwitten worden gemaakt, maar ook dat de vele mutaties in genen niet onmiddellijk tot ziektes leidt zolang er nog maar een juiste kopie van het betreffende gen voorhanden is.
Voor NMD tot handelen overgaat moet er een veelheid aan factoren met dat foute mRNA wisselwerken. Hoe dat gebeurt was, dus, niet bekend. Een onderzoeksgroep rond Oliver Mühlemann heeft nu uitgevonden dat een eiwit (UPF1 van Up-Frameshift1) daarbij een belangrijke rol speelt. Dat eiwit wordt aan het mRNA gekoppeld. Terwijl dat eiwit in het ribosoom van het goede mRNA wordt afgeknipt, blijft het met het foute mRNA verbonden, waardoor allerlei enzymen actief worden die dat foute mRNA weer afbreken voordat het de verkeerde eiwit heeft ‘afgedrukt’. Of een mRNA-molecuul als goed of fout herkend wordt hangt af van de lengte. Het mechanisme reageert niet op een andere basevolgorde. Ook in dat geval bevat het mRNA de codering voor een verkeerd eiwit, dat dus wel aangemaakt wordt.
David Zünd van de Bernse onderzoeksgroep stelt dat nog lang niet alles duidelijk is: “De UPF1-moleculen die aan fout mRNA zijn gebonden, worden er in het ribosoom niet allemaal afgeknipt. We gaan er van uit dat die eiwitmoleculen die op het foute mRNA blijven zitten een signaal geven dat de coderende sequentie op het mRNA onderbroken is. Hoe de op het mRNA achterblijvende UPF1-moleculen het afbreken van het foute mRNA in werking zetten is nog onderwerp van verdere studie.”
Medeonderzoekster Simone Rufener heeft nog een raadsel van de kwaliteitsbewaker NMD kunnen oplossen. Uit ouder onderzoek zou zijn gebleken dat de aanmaak van het verkeerde mRNA maar kort na het ontstaan van het mRNA kon worden herkend. Dat op deze wijze toch foute eiwitten zouden worden geproduceerd met mogelijk fatale gevolgen voor het organisme. Rufener heeft echter aangetoond dat de kwaliteitscontrole voortdurend plaatsvindt. Volgens Rufener betekent dat dat NMD bij een- en meercellige organismen reeds vroeg in de evolutie is ontstaan.

Bron: Alphagalileo