Het persbericht spreekt over een nieuw celtype, maar dat is natuurlijk kul. Dat was alleen nog niet eerder ontdekt zoals er nog zoveel te ontdekken valt aan het bijster ingewikkelde systeem dat leven heet, zeker als het over meercellige organismen gaat. Dat ‘nieuwe’ celtype zou ervoor zorgen dat het embryo zich op de juiste manier ontwikkelt, speculeren de onderzoeksters. Daarbij gaan die cellen zover zichzelf op te offeren voor het goede verloop van die ontwikkeling. Lees verder
Tag archieven: transposons
Hoe sturen plantencellen hun epigenoom?
Wat er met ons lichaam gebeurt staat allemaal opgetekend in het genoom, maar er zijn zo’n tweehonderd verschillende cellen in ons lichaam die ook nog eens reageren op hun omgeving. Dan komt het epigenoom om de hoek kijken, het systeem dat de activiteit van de genen bepaalt. Onderzoekers in Japan zijn bij planten eens gaan kijken hou dat epigenoom in elkaar steekt. Het lijkt er op dat dat epigenoom weer ingewikkelder in elkaar steekt dan gedacht, waarbij genen het zwijgen wordt opgelegd en springende genen aan banden worden gelegd, maar dat in een ingewikkeld samenspel met stress- en ontwikkelingsgenen. Lees verder
Speciale zinkvingers houden springende genen in toom
Springende genen beïnvloeden functies van genen
Springende genen, ook wel transposons genoemd, zijn jaren lang als ’troep’ beschouwd en door onderzoekers veronachtzaamd. Toch maken die van plaats wisselende ‘genen’ een belangrijk deel van DNA uit: bij mensen zo’n 50%, bij sommige planten zelfs 85%. Transposons hebben invloed op de activiteit van nabije genen. Promovendus Raúl Castaneras van de universiteit van Navarra (Sp) was daarbij vooral geïnteresseerd in het effect daarvan op de productie van eiwitten in commercieel interessante schimmels en paddestoelen.
Lees verder
Endosi-RNA’s houden springende genen in bedwang
Moleculen die endosi-RNA’s worden genoemd helpen te voorkomen dat het in ons lijf een genetische chaos wordt, ontdekten onderzoekers van het Britse Brabaham-instituut. Die zorgen ervoor dat de transposonen, genetische parasieten waar ons DNA vooral uit bestaat, koest worden gehouden. Actieve transposonen, ook wel springende genen genoemd, zouden de ‘normale’ genen kunnen beschadigen die de mens wel van nut zijn. Lees verder
Hoe het komt dat springende genen ons niet om zeep brengen
Springende genen (of transposons) zijn ‘vreemde’ elementen in ons erfgoed. Ze heten zo omdat ze de neiging hebben een andere plek in het genoom op te zoeken; vaak tijdens een proces dat duplicatie genoemd wordt. Ongeveer de helft van het menselijke erfgoed bestaat uit deze ‘genparasieten’. Springende genen kunnen al springende mutaties veroorzaken of terugdraaien.
Die transposons zijn niet alleen maar reislustig, maar ze zijn ook honkvast: ze laten een kopie achter op hun oude stek. Op den duur zou dat de dood van de ‘gastheer’ betekenen, maar dat is in werkelijkheid niet zo. Onderzoekers van de universiteit van Nottingham hebben, samen met die van Cambridge en het kankerinstituut in Seattle (VS), gevonden hoe dat in zijn werk gaat.
Ronald Chalmers, hoogleraar moleculaire en celbioiologie in Nottingham, is min of meer per ongeluk tegen het antwoord opgelopen. “We deden biochemisch onderzoek en vonden toevallig de oplossing. Het is zo simpel dat we eerst het vernuftige ervan niet konden waarderen. Hoe was het mogelijk dat dat niet jaren eerder was ontdekt?”
Het enzym transposase is verantwoordelijk voor het ‘springproces’. Dat bindt zich aan de einden van een transposon en zorgt voor het knippen en het plakken op een nieuwe plek in de DNA-streng (met achterlating van een kopie). Als het aantal kopieën een drempel overschrijdt, dan stijgt de transposaseconcentratie en raken de bindingslocaties bezet. Het enzym moet dan ‘vechten’ voor een plekje waaraan het kan binden en dan stopt de transpositie (het ‘springen’ van de genen, dus). Een verdubbeling van het aantal kopieën halveert de transpositiesnelheid, zo bleek uit computerberekeningen. Met andere woorden: de springende genen ‘vergiftigen’ zich zelf en houden daarmee hun gastheer in leven.
Bron: AlphaGalileo
Hoe houd je springende genen in bedwang?
Eierstokken van een fruitvliegje. De eiwitten die een rol spelen in de piRNA-route zijn groen, DNA blauw (foto IMBA)
In de loop van de evolutie is er heel wat ‘ongerief’ in ons DNA terechtgekomen. Springende genen (ook wel transposons genoemd) zijn daar een voorbeeld van. Eigenlijk zouden we die springende genen liever kwijt dan rijk zijn, omdat ze het grote risico in zich bergen van ernstige mutaties en het breken van DNA-strengen. Dat is niet gebeurd. Die transposons worden echter onschadelijk gemaakt door een verdedigingsmechanisme, dat nu door een groep onderzoekers rond Julius Brennecke van het instituut voor moleculaire biotechnologie in Wenen (IMBA) is uitgeplozen bij fruitvliegjes. Het blijkt dat zo’n vijftig genen zijn betrokken bij het belangrijkste beschermingsmechanisme tegen de kwalijke effecten van springende genen, dat aangeduid wordt met piRNA-route.
Pakweg de helft van het menselijke, maar ook ander dierlijke en plantaardige erfgoed (genoom) bestaat uit wat genoemd wordt genoomparasieten zoals transposons. Deze ‘zelfzuchtige’ genen kunnen zich bij de voortplanting min of meer vrij door het DNA-molecuul verplaatsen. Dat is, zoals gezegd, riskant voor de soort, maar planten en dieren hebben zich daartegen gewapend. Je zou het kunnen beschouwen als een soort genoomimmuunsysteem.
Tot nu toe was er weinig van bekend hoe dat mechanisme werkt. Ruw geschetst werkt dat mechanisme met bepaalde eiwitten (Piwi-eiwitten) die binden aan stukjes RNA en zo een complex vormen. Die complexen herkennen transposons en voorkomen dat die stukjes DNA worden omgezet in RNA en verhinderen dus de vorming van ongewenste eiwitten.
De 50 geïdentificeerde genen die bij dat mechanisme zijn betrokken in het fruitvliegje, komen voor een belangrijk deel ook in het menselijk erfgoed voor. De onderzoekers verwachten dan ook dat deze resultaten ook, althans deels, gelden voor andere dieren (ook mensen). Sommige van die genen zijn nodig voor het produceren van piRNA’s, maar andere zijn verantwoordelijk voor de stofwisseling in de mitochondriën (de ‘energiecentrale’ van een cel), het transport van RNA of de transcriptie.
De ontdekking van de Weense onderzoekers is pas het begin. Er blijven genoeg vragen over. Bijvoorbeeld waarom die transposons nog in ons erfgoed zitten. Je zou kunnen zeggen dat dat een ingebouwd mechanisme voor evolutie is, maar is dat ook zo? Een andere kwestie is natuurlijk hoe de piRNA’s van generatie op generatie worden doorgegeven. Wordt, ongetwijfeld, vervolgd.
Bron: AlphaGalileo (foto: IMBA)