Niet-coderend DNA kan zich snel omvormen tot gen

Niet-coderend DNA

Niet-coderend DNA is niet bepaald nutteloos

Het zit goed in elkaar en het zit vrij ingewikkeld in elkaar dat ‘per-ongelukke’ systeem dat leven heet (ik kan het niet vaak genoeg zeggen). Het lijkt er op dat de ideeën over de manier waarop levende organismen nieuwe eiwitten gaan aanmaken enigszins herzien moeten worden. Uit bestudering van het erfelijk materiaal van rijstplanten bleek dat niet-coderend DNA zich (relatief) snel kan omvormen tot coderend DNA (en dus tot genen). Lees verder

Genen te activeren met synthetische Cas9-eiwitten

George Church, de 'aartsvader' van de synthetische biologie

George Church, de ‘aartsvader’ van de synthetische biologie (afb: Harvard)

CRISPR/Cas9 is niet alleen een van bacteriën geleend systeem om genen te vervangen, maar ook om genen te activeren, waardoor de bijbehorende eiwitten (meer) worden geproduceerd. Hoe je met welke synthetische Cas9-eiwitten welke genen activeert is nu eens in een artikel in Nature bij elkaar gezet door synbiocoryfee George Church van de Harvard-universiteit en de zijnen: een nieuw hoofdstuk in het handboek in genetisch knutselen. Lees verder

Niet alle genen even mutatiegevoelig

Ben Lehner (EMBL)

Ben Lehner (EMBL)

Uit onderzoek aan 17 miljoen mutaties bij 650 kankerpatiënten blijkt dat niet alle genen even mutatiegevoelig zijn. Er zijn grote verschillen die zouden worden veroorzaakt door het systeem dat DNA repareert, de ‘DNA-speller’. Dat mechanisme is vooral gespitst op de belangrijkste delen van de chromosomen, waar de belangrijkste, actieve genen huizen. Het onderzoek werd uitgevoerd door twee wetenschappers van het Europese lab voor microbiologie (EMBL) in Barcelona.
Lees verder

De histoncode ietsepietsje ontrafeld

histoncode

Het verschil van 1 aminozuur (omcirkeld) bepaalt of een histon een gen actief houdt of dat dat gen is uit te schakelen.

Om het niet al te ingewikkeld te maken (moleculaire biologie is al lastig zat) hebben we het ook hier vaak over het ’tot expressie brengen’ van een gen, alsof het iets is als een knopje omdraaien. Het zit wat lastiger in elkaar. In cellen zijn allerlei genen aan- en uitgeschakeld, maar hoe gaat dat eigenlijk? Onderzoekers van het bekende Cold Spring Harbor-lab in Amerika hebben een tipje van de sluier opgelicht. Uiteindelijk is het allemaal scheikunde! Lees verder

Knipeiwit omgebouwd tot ‘genschakelaar’

Door een eiwit bedoeld om genen door te knippen, CRISPR-Cas, iets te veranderen knipt dat eiwit niet, maar zet genen op ‘actief’. Dat melden onderzoekers van het Amerikaanse Whitehead-instituut in het wetenschapsblad Cell Research.

Het Cas-eiwit

Het Cas-eiwit

De onderzoeksgroep, onder leiding van Rudolf Jaenisch,  noemt het veranderende eiwit CRISPR-on. Het CRISPR-Cas-systeem, een aan het immuunsysteem van bacteriën ontleende genschaar, is tegenwoordig een populair onderzoeksthema, ook om dat dat kandidaat is voor de opvolging van de ‘aloude’ genschaar de zinkvingernucleases. In het CRISPR-Cas-eiwit is dat deel dat verantwoordelijk is voor het knipwerk (Cas9) een beetje veranderd met een domein dat gewoonlijk verantwoordelijk is voor de transcriptie van genen op het DNA naar mRNA. Het resultaat heet dCas9. De tweede component van het knipsysteem, een  gespecialiseerd RNA-molecuul (sgRNA) dat normaal gesproken Cas9 naar het gewenste aangrijpingspunt in het DNA leidt, is ongewijzigd gebleven. Alleen is dat aangrijpingspunt nu de promotor van het gezochte gen. Het grote voordeel is volgens Jaenisch dat je voor al je experimenten maar één soort Cas9 nodig hebt. Om het aangrijpingspunt te veranderen hoef je alleen de basenvolgorde van je sgRNA maar aan te passen. De synthese daarvan is tegenwoordig geen probleem.
Je kunt zelfs verschillende sgRNA’s tegelijk inspuiten en zo het Cas9 laten ingrijpen bij een aantal genen tegelijk, waarbij je  zelfs de verhouding tussen de expressieniveaus kunt instellen door van het ene sgRNA wat meer toe te voegen dan van het andere, aldus de onderzoeker. Hij heeft de techniek  op muizen- en mensencelkweekjes uitgeprobeerd en ook op levende muizenembryo’s. In die celkweekjes heeft hij drie genen tegelijk aangezet. De onderzoekers vermoeden echter dat ze veel verder kunnen gaan en misschien wel mechanismen kunnen schakelen waarbij 10 of meer genen zijn betrokken. Waar de grens ligt, zal verder onderzoek moeten uitwijzen.

Bron: C2W