Stukje ‘duister’ DNA opgehelderd met een rekenmodel

Splitsingsmutatie

Een mutatie in het DNA (rode XXX) zou er toe kunnen leiden dat een bepaald deel van het DNA niet wordt afgeschreven naar het RNA, waardoor er een verkeerd eiwit wordt aangemaakt (afb: Olena Shmahalo/Quanta Magazine)

Als we het over DNA en genen hebben, dan hebben we het over maar 1 à 2% van dat waanzinnig lange molecuul (uitgerekt zo’n 2 m lang). In het hele ingewikkelde huishouden spreekt die 98, 99% ’terra incognita’ een belangrijke en nog lang niet  doorgronde rol. Het bepaalt, bijvoorbeeld, hoe het DNA wordt afgeschreven dat het pre-RNA oplevert, dat vervolgens door ‘splitsing’ (splicing, in het Engels) van een deel van dat pre-RNA wordt omgezet in boodschapper-RNA (ook aangeduid met m-RNA). Onderzoekers in Canada hebben met behulp van de computer en kunstmatige intelligentie uitgezocht hoe dat splitsen kan leiden tot fouten (=ziektes). Autisme en darmkanker, bijvoorbeeld, zouden daar hun oorsprong (kunnen) vinden.

Lees verder

Klein RNA-molecuul regelt expressie honderden genen

Het knippen van de minor-introns

Het knippen van de minor-introns

Een kleine RNA-molecuul, aangeduid met U6atac, is verantwoordelijk voor  de expressie van honderden genen, die coderen voor eiwitten die belangrijke functies hebben in de cel, zoals celgroei, de celcyclus, herstel van DNA-schade, ionkanalen en dergelijke. Daarbij speelt het mechanisme (splicing) een rol, die er voor zorgt dat, onder meer, bepaalde, niet-coderende stukjes uit het boodschapper-RNA, de ‘mal’ die wordt gebruikt om in het ribosoom eiwitten te maken, worden verwijderd (de zogeheten introns).
Processen in de cel zijn erg ingewikkeld. Dat splicing-mechanisme zorgt  ervoor dat introns worden verwijderd, nadat er een kopie gemaakt is van een stukje DNA (transcriptie) en de rest weer aan elkaar wordt gelast (=splicing). Dat hele mechanisme van knip/las-activiteiten wordt dan weer splicesoom genoemd, naar analogie van genoom.

Er zijn, om het nog wat ingewikkelder te maken, twee typen splicesomen: de minor en de major. De major (=meerdere) zoals de naam al zegt, is overheersend. “Zo overheersend”, zegt  Gideon Dreyfuss, leider van het onderzoek, “dat het vaak over het hoofd werd gezien. Soms wordt het niet eens genoemd.” Het belangrijkste splicesoom werkt op grootste deel van de introns (meer dan 200 000), terwijl het minor-splicesoom in actie komt bij enkele honderden.  Waarom dat kleine splicesoom nog steeds bestond en wat zijn specifieke rol was, was lang een vraagteken, vooral ook omdat het minor-splicesoom weinig efficiënt is. Hoe dan ook, duidelijk werd wel dat het boodschapper-RNA-moleculen die gekopieerd worden van stukken DNA met minor-introns werkt niet alvorens ook de minor-introns er uit zijn geknipt. Waarom, zo vroegen wetenschappers zich af, was dat ‘onding’ er niet door de evolutie uit geselecteerd?
Je zou dat een onzinnige vraag kunnen noemen, want de evolutie heeft heel wat ‘onnutte’ functies en eigenschappen laten voortbestaan. Met die vraag worstelden Darwin en zijn navolgers als Hugo de Vries al mee.
Dreyfuss en zijn medewerkers aan de universiteit van Pennsylvania ontdekten dat er meer zat achter dit ‘onnutte’ splicesoom. Ze zorgden ervoor dat de transcriptie geremd werd en maten drie, vier uur later wat er gebeurde met de hoeveelheid klein, niet-coderend RNA. Het niveau van U6atac zakte. Dat RNA-molecuultje, die een katalytische werking heeft in het minor-splicesoom, valt snel uit elkaar. Dreyfuss: “En we weten dat het al een van de zeldzaamste snRNA-moleculen in de cel is. Dus dachten we dat dat een effect op het minor-splicesoom zou moeten hebben. We ontdekten als we U6atac in cellen reduceerden, elk minorintron anders reageerde: sommige waren erg inefficiënt en erg gevoelig voor het U6atac-niveau, wat verklaart waarom boodschapper-RNA van deze genen geen goede expressie heeft.” Weinig U6atac in de cel verlaagt de snelheid van het knippen van introns en daarmee de expressie van belangrijke genen die minorintrons bevatten.

Vervolgens bekeken de onderzoekers wat er gebeurde als de concentratie aan U6atac werd verhoogd. Dat gaf een sterk verbeterde spliceactiviteit bij de inefficiënte introns te zien. Als de minorintrons niet goed uit het boodschapper-RNA worden geknipt, wordt uiteindelijk dat boodschapper-RNA weer vernietigd, waardoor genen met minorintrons niet meer coderen voor eiwitten. Met dit onderzoek komt de rol van het minor-splicesoom in een heel ander daglicht te staan, met een belangrijke rol voor U6atac. Dat sn-RNA fungeert in feite als een regelmechanisme voor genen met een minor-intron. Dreyfuss: “We denken dan ook dat dat minor-splicesoom is bewaard gebleven om dat het gebruikt wordt als een soort regelventiel en niet simpel als een splicesoom. Dat is een heel belangrijk mechanisme, dat we niet hadden verwacht.” Verder onderzoek moet achterhalen welke factoren de concentratie van U6atac – en dus de expressie van ‘minorgenen’ – beïnvloeden.

Bron: Eurekalert