Afgeleide van groeihormoon bevordert en stopt groei kanker

Werking van GHRH in hypofysecellen

De werking van GHRH in hypofysecellen (afb: flipper.dif.org)

Onderzoekers in de VS rond Nobelprijswinaar Andrew Schally (91) ontdekten dat een afgeleide van het groeihormoon GHRH kankercellen in petrischaaltjes aanzet tot groei, terwijl die in muisjes opgezadeld met menselijke kankercellen de groei juist stopte. Het synthetische hormoon, MR409, en soortgelijke hormoonachtige peptiden blijken niet alleen interessant om hun uitwerking op kankercellen, maar ook om hun vermogen beschadigde weefsel te herstellen. In muizen zouden MR409 en ‘verwanten’ ervoor gezorgd hebben dat na een hartaanval de schade weer hersteld werd. Lees verder

Kunstmatig enzym fungeert als genschakelaar

Synthetisch enzym activeert gen enz.

Het domino-effect dat het synthetische enzym teweegbrengt. Blauw is het kunstmatige enzym, rood hete hormoon dat het synthetische luciferasegen inschakelt  (afb: uuniv. van Bazel/Yasunori Okamoto)

De natuur heeft er een tijdje over mogen doen, maar toen had zij ook iets moois in elkaar gesleuteld: de cel, de bouwsteen van het leven. Onderzoekers proberen die ‘volmaakte’ schepping nog wat verder te verbeteren en kijken of ze met zelfgemaakte verbindingen genen kunnen (de)activeren. Dat kan. Om wat te doen? Misschien juist dat. Lees verder

Leven is koolstofchemie of toch niet?

Cytochroom c

Het molecuulmodel van het heemeiwit cytochroom c (afb: Wiki Commons)

Het leven zoals wij dat kennen is koolstofchemie: alle biomoleculen hebben een geraamte van koolstofatomen. Silicium (kiezel) is een aan koolstof verwant element, maar reageren niet zo makkelijk met elkaar. Nu schijnen er scheikundigen te zijn die door gerichte evolutie een eiwit ontwikkeld hebben dat de vorming van koolstof/siliciumverbindingen katalyseert. De genetisch geëvolueerde bacteriën bleken in staat die hybride verbindingen te maken. Kunnen we nog een stap verder gaan? Kan leven (ook) kiezelchemie worden? Lees verder

‘Dementieplaques’ mogelijk basis van het leven

Amyloïde plaquesAmyloÏde plaques, aankoekingen in de hersens, zijn kenmerkend voor de ziekte van Alzheimer.  Niet best, maar nu komen Ivan Korendovych en medewerkers van de Syracuse-universiteit in New York met de suggestie dat die destructieve klonteringen wel eens het pad naar het eerste leven op aarde zouden kunnen hebben geëffend. De plaques kunnen zich als katalysatoren gedragen voor reacties die ten grondslag liggen aan het proces dat we leven noemen, lang voordat de enzymen (=katalysatoren) ten tonele verschenen die we nu kennen. Lees verder

DNA gebruikt als katalysator

DNA, het ‘levensmolecuul’, is niet alleen te gebruiken als archief voor de eiwitfabricage in een cel, maar ook als katalysator, een stof die een chemische reactie mogelijk maakt en/of versnelt. Scheikundigen ontwerpen katalysatoren bij voorkeur op de tekentafel, maar het is nog niet zo eenvoudig die ontwerpen ook in de praktijk te maken. In de cel heten katalysatoren enzymen. Je zou ze de werkpaarden van het leven kunnen noemen. Enzymen katalyseren biologische processen, waarbij heel ingewikkelde organische verbindingen worden opgebouwd (of afgebroken). Enzymen zijn zelf weer eiwitten, opgebouwd uit aminozuren. Scott Silverman en zijn medewerkers aan de universiteit van Illinois denken dat DNA hulp kan bieden. “Ons idee is om kunstmatig gesynthetiseerde stukjes DNA te gebruiken om zijketens van eiwitten te veranderen, waardoor hun biologische functie verandert”, stelt Silverman in een persbericht.
Een belangrijke reactie in levende systemen is de toevoeging of verwijdering van een fosfaatgroep, de ‘rest’groep van fosforzuur, aan een eiwit. In het rijk van de eiwitten zijn de aminozuren serine en tyrosine verantwoordelijk voor het toevoegen of verwijderen van fosfaatgroepen, waardoor de eiwitfunctie verandert of het enzym wordt uit- of aangeschakeld. Zonder katalysatoren duurt dat lang ( in de orde van duizenden of zelfs miljoenen jaren). In de natuur zorgen kinases en fosfatases er voor dat die reacties vaart krijgen.
Silverman en zijn groep slaagden er in stukjes DNA dat katalyserende werk te laten doen. Volgens Silverman probeerde hij met zijn medewerkers te laten zien dat DNA geschikt is al katalysator. Nu dat is aangetoond gaat hij verder. “We proberen nu uit te vinden welke reacties DNA kan katalyseren en hoe we DNA-katalysatoren kunnen vinden die die bepaalde reacties versnellen.” Om stukjes DNA te bepalen die de fosfaat-additie katalyseren, werd gebruik gemaakt van een in-vitro-selectieproces. Simpel gesteld komt dat neer op een hele reeks petrischaaltjes met elk een stukje DNA en de benodigde reagentia en dan maar kijken in welk schaaltje de reactie loopt. Niet bepaald hogere scheikunde.
De DNA-katalysatoren bleken hun actieve arbeid ook te verrichten in de nabijheid van andere eiwitten. Die toevoegingen moesten aantonen dat de truc ook werkt in een cel(achtige omgeving).

Bron: Eurekalert