‘Slimme’ cellen maken behandeling op celniveau mogelijk

Kunstcellen

Kunstcellen produceren als ze een bepaalde verbinding detecteren (linksboven) een eiwit (groen), dat er voor zorgt dat nog niet gerijpte cellen zich omvormen tot zenuwcellen (rechts) (afb: Science)

‘Slim’ is een tegenwoordig veel misbruikt woord. Meestal is er aan die techniek niet zo veel slims te ontdekken. Kennelijk rukt die term ook in de biologie op, want een persbericht van de universiteit van Alberta (Can) meldt dat synthetische, ‘slimme’ cellen het mogelijk maken op celniveau te behandelen. ‘Slim’ zal dan wel betekenen dat die kunstcellen ‘weten’ welke cellen ze moeten behandelen, maar dat is gewoon een kwestie van die kunstcel te laten zoeken naar een cel met het juiste ‘uithangbord’. Is een mens die het uithangbord ‘bakker’ aan een winkel kan ontdekken slim?
Lees verder

‘Legomolecuul’ zou alleen kankercellen doden

Legoweb doodt kankercellen

Legomoleculen vormen onder bepaalde, kankerspecifieke omstandigheden binnen kankercellen een verwoestend netwerk (afb: Max Planck-instituut)

Kanker wordt meestal bestreden door bestraling of chemotherapie, maar het probleem met beide behandelwijzen is dat ook gezonde cellen daar last van hebben. Nu wordt er al sinds jaar en dag gezocht naar methodes om heel gericht kankercellen te doden, maar kennelijk zijn die nog niet zo succesvol dat ze ook breed worden ingezet. Onderzoekers van het Max Planckinstituut voor polymeeronderzoek rond David Ng hebben nu een molecuul ontworpen dat alleen ‘in actie’ komt als bepaalde voor kanker specifieke omstandigheden aanwezig zijn en in de kankercellen een web vormt waarna die het loodje leggen (is het idee). Labproeven met celkweken zouden de bruikbaarheid van de methode hebben aangetoond. Lees verder

Grote moleculen komen lastiger bij de celkern

Kerntransport

Groot biomolecuul met ‘passen’ (oranje) probeert zich door de kernporie (grijs/zwart) te wringen (afb: Giulia Paci)

Hoe groter een molecuul is hoe meer ‘passen’ een molecuul nodig heeft om het kernmembraan te mogen passeren, bleek onderzoekers van, onder meer, de Johannes Gutenberguniversiteit in Mainz. De resultaten van het onderzoek zeggen iets over de manier waarop virussen er in slagen om hun genoom laten vermeerderen. Lees verder

Leidt kankertherapie bij jongeren tot snellere veroudering?

Chemotherapie (met koeling)

Een patiënt ondergaat chemotherapie (met koeling) afb: WikiMedia Commons)

Het doet me een beetje denken aan de scene van Koot & De Bie waarbij Bie in een bed ligt en laat zien wat hij allemaal moet slikken. Een groot deel van zijn, felgekleurde, medicijnen bestaat uit middelen die hij moet slikken om bijwerkingen tegen te gaan. Nu lijkt het er op dat kankertherapieën, met name chemotherapie, kunnen leiden tot een snellere veroudering bij jonge kankerpatiënten. Lees verder

Mitochondriën belangrijk voor aanmaak hersencellen

Bestemming hersenstamcellen en de rol van mitochondriën daarbij

Hersenstamcellen (rood de kern, groen de mitochondriën) na deling. Cellen met gefragmenteerde mitochondriëm (boven) ontwikkelen zich tot diverse soorten neuronen terwijl de cellen met buisvormige mitochondriën (onder) hersenstamcellen bleven (afb: Ryohei Iwata)

Mitochondriën worden vaak de energiecentrales van de cel genoemd. Ze hebben hun eigen kleine genoom, ook al zo opmerkelijk. Het lijkt er nu op dat ze ook nog eens een rol spelen in de rijping van hersenstamcellen in gespecialiseerde hersencellen, zo ontdekten onderzoekers in België onder leiding van Pierre Vanderhaeghen van de KU Leuven. Dat schijnen ze te doen gedurende een periode die bij mensen twee keer zo lang duurt als bij muisjes. Dat zou een verklaring kunnen zijn voor de abnormale (want te grote) hersens van mensen en het feit dat mitochondriale storingen kunnen leiden tot ontwikkelingsstoornissen van de hersens. Lees verder

Onderzoekers maken kunstmatige organellen

kunstmatige organellen

Intrinsiek wanordelijke eiwitten (groen) klonteren samen in cellen om kunstmatige organellen te vormen (afb: Michael Dzuricky)

Onderzoekers over de hele wereld zijn al jaren bezig om synthetische cellen te maken, maar heel veel verder dan wat primitieve dingetjes zijn ze nog niet gekomen en dat is ook geen wonder gezien de immense complexiteit van cellen, voor eukaryote. Onderzoekers van de Amerikaanse Dukeuniversiteit hebben een methode bedacht om de fasescheiding van bepaalde eiwitten te beheersen, waardoor ze in staat waren om membraanloze organellen (cellichaampjes) te fabriceren. Dat zou mogelijkheden openen om celfuncties te beïnvloeden of zelfs een cel dingen te laten doen die die nog niet eerder gedaan heeft. Lees verder

RNA draait ook aan de knoppen van onze genen

RNA-bindende eiwitten

De technieken die gebruikt werden om de RNA-bindende eiwtten te karakteriseren (afb: Nature)

Het is al vaker verteld: menselijk DNA heeft zo’n 20 000 genen en de andere 98% zou troep zijn (dacht men ooit). Steeds duidelijker wordt dat dat flauwekul is. In het grootschalige project ENCODE (Encyclopedie voor DNA-elementen) houden honderden onderzoekers zich bezig met het opvullen van de ‘lege’ plekken op het genoom. Zo hebben ze inmiddels vele plekken geïdentificeerd waar bepaalde regeleiwitten, de helpen met het in- of uitschakelen van genen, binden aan het DNA.  Nieuw onderzoek binnen dat project heeft nou andere plaatsen op DNA ‘blootgelegd’ die coderen voor RNA. Die RNA-moleculen coderen niet voor eiwitten (zoals boodschapper-RNA) maar spelen zeer waarschijnlijk een rol in de genexpressie (welke genen zijn actief en in welke mate en welke niet). Lees verder

Is apoE4 de aanstichter van Alzheimer?

Alipoproteïne E

ApoE is een vrij eenvoudig eiwit (afb: WikiMedia Commons)

Het eiwit apolipoproteïne E (apoE) fungeert als een soort bezorgdienst in de hersens. Het voorziet neuronen van belangrijke voedingstoffen, waaronder meervoudig onverzadigde vetzuren, de bouwstenen van celmembranen. Sommige van die vetzuren worden omgezet in endocannabinoïden (cannabisachtige stoffen). Dat zijn signaalstoffen die een groot aantal functies in het zenuwstelsel reguleren maar ook de afweerreacties sturen om de hersens te vrijwaren van ontstekingen. Onderzoekers van, onder meer, het Max Delbrückcentrum voor moleculaire geneeskunde in Duitsland hebben nu uitgezocht hoe een mutatie van dat eiwit, aangeduid met apoE4, de orde in de hersens danig overhoop kan halen. Lees verder

Kan DNA meer dan een passieve opslag zijn van code?

DNA-origami opgebouwd uit viraal DNA

DNA-origami opgebouwd uit viraal DNA (afb: Wiki Commons)

Alle onderdelen van het leven zijn dode materialen, maar tezamen vormen ze iets dat we leven hebben genoemd. Kunnen we door te knutselen met DNA celonderdelen maken? Misschien kun die DNA-constructies wel gebruikt worden voor ‘ongehoorde’ functies in ons lijf. Hebben we binnenkort kunstmatige cellen van DNA-componenten die leven (en ja, wat is leven?)? Lees verder

Kunstmatige rode bloedcellen kunnen meer dan de echte

Nepbloedcel

Een nepbloedcel (afb: nano)

Het schijnt dat al lang wordt geprobeerd om kunstmatige rode bloedlichaampjes te maken, maar tot nu toe scheen dat nooit goed gelukt te zijn. Nu zeggen onderzoekers (vooral) van de universiteit van Nieuw Mexico (VS) synthetische bloedcellen gefabriekt te hebben die evenveel kunnen als de echte rode bloedlichaampjes en meer. Lees verder